To meet the great needs of sensing technology for harsh environment and sensors for IOT (Internet of things), a high performance hydrogen sensor capable to work in harsh environment is proposed basing on a honeycomb GaN nanonetwork. As a wide band gap semiconductor, the GaN has high temperature resistance as well as chemical inertness, making it suitable to operate at harsh environment, and the sensors basing on nanostructures normally exhibit much enhanced sensing performance over corresponding films. However, the manipulation of separated nanostructures such as the nanowire and the nanotube is rather tough, leading to a difficulty of nano sensor fabrication, and becoming a bottleneck of their real world application. To solve this problem, an in-plane electrically conductive nanostructure namely honeycomb GaN nanonetwork is proposed to replace the separated GaN nanowire to make a nano hydrogen sensor. Because of its in-plane electrical conduction, nano sensor fabrication could be down using simple and controllable process. This project focus on the fundamental research of FET (Field Effect Transistor) type and capacitance type hydrogen sensor on the honeycomb GaN nanonetwork. The influence mechanism of the insulator insertion layer including the silicon dioxide, the silicon nitride, and the gallium oxide on the hydrogen sensing will be studied. Moreover, the mechanism of the enhanced performance of nano sensor will be investigated. With these efforts, a nano hydrogen sensor suitable for harsh environment with high sensitivity, fast response, low limit of detection,and high selectivity will be developed using simple and controllable process, paving the road of high performance nano sensor for real world application.
本课题面向物联网高性能传感器和恶劣环境下传感技术的重大需求,基于蜂窝氮化镓纳米网,开展适合恶劣环境下使用的高性能纳米氢气传感器基础研究。宽禁带半导体氮化镓耐高温、耐酸碱腐蚀,其纳米传感器表现出优异响应性能。然而目前技术很难操控纳米线和纳米管等分立纳米结构,很难通过简易工艺可控、批量制备纳米器件,成为纳米材料走向器件研究应用的瓶颈。针对上述问题,本课题提出用连续性的蜂窝氮化镓纳米网替代分立的纳米线,基于蜂窝氮化镓纳米网面内导电特性直接采用薄膜加工方法将其加工成纳米器件,极大的简化了纳米器件加工过程。基于蜂窝氮化镓纳米网,课题提出 FET(场效应晶体管)型和电容型纳米氢气传感器,重点研究二氧化硅、氮化硅、氧化镓绝缘插入层对氢气检测影响机理,纳米传感器优异响应特性机理,和氢气浓度量化数学表达式,为高性能纳米传感器的简易、可控、大批量制备提供理论指导和技术储备,加快高性能纳米传感器实用化进程。
实验以Ti/Al/Ti/Au多层金属膜为欧姆电极,在GaN蜂窝纳米网上制备和研究了FET型和电容型氢气传感器。实验研究了门极与GaN之间的电介质插入层对氢气检测的影响,包括氮化硅和氧化锌。实验结果表明,插入氮化硅层的器件对氢气几乎没有响应,而插入氧化锌层的器件氢气检测效果也不好,因此接下来的实验都没有插入任何电介质层。项目还研究了门极金属厚度对氢气检测的影响规律,门极厚度分别为90 nm,20 nm和10 nm。结果表明门极厚度对氢气检测起着举足轻重的影响:90 nm的器件最低只能检测50 ppm的氢气,当门极厚度减小到20 nm后该器件低浓度检测方面明显变好,可以测试低于5 ppm的氢气,厚度近一步降低到10 nm时器件的最低检测浓度进一步降低,并且响应时间也随着厚度的减小而缩短,因此我们将优化后的门极厚度设置为10 nm。. 根据上面的研究,我们制备了最终优化版的FET型氢气传感器。测试结果表明,该传感器对氢气有快速的响应,1000 ppm时其响应时间只要2s, 这是目前报道的同类型半导体中最好的结果之一。1000 ppm时的恢复时间为4 min,跟文献报道类似。我们特别注意了该传感器低浓度检测性能。实验发现,该传感器对1 ppm的氢气都有非常明显的响应,结合行业惯用的信噪比大于3的标准,我们计算出其最低检测浓度为0.024 ppm。而目前报道的最好结果大约为5 ppm, 商业用光谱仪最低也只能测试到4 ppm。因此,本项目制备出的器件比目前报道的实验结果和商业产品低了大约两个数量级,实现了氢气低浓度检测的重大突破,有望在人体呼气疾病检测(4-20 ppm)和大气监控(0.5 ppm)方面得到实际应用。. 虽然该传感器可以在室温下工作,但加热状态下其响应性能显然更好。然而传统的底座式加热方法体积大,加热到工作温度能耗高达900 mW,与目前的物联网大趋势相背离。本实验引入微加热器替代传统底座式加热法,实验采用MEMS技术,以Pt金属电阻为微加热器,其还可以作为温度传感器,实时监测传感器的工作温度,提高检测精度。实验设计了一款集成了氢气传感器、参照传感器、微加热器和温度传感器的集成氢气传感器阵列。该芯片上的微加热器升温和降温都非常迅速,升到419 oC的升温和降温时间分别为2.3 和2.5 ms,并且加热功耗小到21mW.
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
论大数据环境对情报学发展的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
高性能热电薄膜氢气传感器的研究
钯纳米粒子多重散射耦合的高性能光纤氢气传感器研究
面向业务的智能软件定义蜂窝网研究
GaN基DNA生物传感器研究