To solve the problem of oxidation and discoloration of copper surface during rolling process which is long plagued with people as a guide and with the investigation of the inhibition mechanism of corrosion inhibitors upon copper surface in rolling oil as the breakthrough point. Molecular dynamics theory is introduced into the mechanism research, the investigation of the evolution rule of the composition and structure of corrosion inhibitor as well as the molecular reactive sites and the distribution in rolling is to be carried out by using methods of materials science. The interaction between corrosion inhibitor and the pure metal or alloy surface in lubricated rolling is further to be explored. The research emphasis is put on investigation the rules and mechanisms of the synergy effect of adsorption and shielding, the lubricated rolling effect as well as the metal characteristics after surface adsorption. As a result, the adsorption model with different directions of copper alloy in rolling deformation zone is to be established. Through theoretical analysis, numerical simulation and experimental research, the absorption and shielding role to form the active site of inhibitor molecules absorbed on the copper surface from the view of molecular dynamics is to be explained as well as the influence between corrosion and lubrication effect. Interaction mechanism between inhibitor and copper surface during rolling process is expected to be revealed. Corrosion inhibitor in copper rolling oil is expected to be guiding design and synthesize from the atomic level of quantitative structure-activity relationship (QSAR). Combined with lubricated rolling and corrosion inhibition mechanism, the questions of oxidation and discoloration of copper surface is to be provided the theoretical basis. Study of high surface and high performance of copper also potential has the extremely high theory and application value.
以解决长期困扰铜轧制过程表面氧化变色问题为导向,以研究轧制油中缓蚀剂对铜表面缓蚀作用机理为切入点,将分子动力学理论引入机理研究,运用材料学方法,研究缓蚀剂组成、结构以及分子反应活性位点与分布的演变规律,借此进一步探讨轧制润滑缓蚀剂与纯金属或合金表面的相互作用,重点研究吸附与屏蔽协同效应、缓蚀剂对轧制润滑以及金属特性的影响规律与机制,建立缓蚀剂与铜合金不同晶面的吸附模型。通过理论分析、模拟计算与实验研究,从分子动力学角度解释缓蚀剂分子活性位点在铜表面的吸附与屏蔽作用形式以及对缓蚀与润滑效果的影响,揭示缓蚀剂与铜表面交互作用机理,有望从原子层面的定量构效关系(QSAR)来指导设计合成铜轧制油中的缓蚀剂,并结合轧制润滑与缓蚀作用机理为解决铜表面氧化变色的问题提供理论基础,同时在铜高表面质量高性能研究方面也潜在着极高的理论及应用价值。
铜轧制过程表面氧化变色问题亟待解决,对其工艺润滑技术提出了新的要求。缓蚀剂能有效减缓铜材腐蚀,已先于理论应用于轧制生产中。然而铜缓蚀剂的选择缺乏理论指导,对铜表面的作用机制尚不明确,缓蚀剂在轧制变形区的吸附模型尚未建立。在此背景下,本课题基于密度泛函理论,选取苯并三氮唑(BTA)和二巯基噻二唑(DMTD)及其衍生物等多种不同结构的铜缓蚀剂,通过量子化学的方法计算缓蚀剂在不同溶剂中的反应活性,并利用拉曼光谱对其组成结构进行微观分析,明确了缓蚀剂中存在N、S、O和P等多个杂原子吸附位点,并优先平行吸附在铜表面的吸附形式;使用质量损失法对铜在轧制油和水包油(O/W)乳化液中的腐蚀行为进行研究,获得了铜在不同溶剂中腐蚀的动力学判据,利用VersaSTAT MC电化学工作站探究了BTA和DMTD类缓蚀剂的协同效应,并通过SEM、TEM、XPS对腐蚀后铜表面进行表征,探明了缓蚀剂在铜表面物理和化学吸附膜共同存在的成膜形式,明确了缓蚀剂在铜表面通过极性基团的吸附与非极性基团屏蔽协同作用机制;建立了轧制变形区缓蚀剂与铜合金不同晶面的吸附模型,从分子动力学角度阐明了缓蚀剂与极压抗磨剂对铜表面的竞争吸附关系,通过分析缓蚀剂组成与结构,构建了缓蚀剂分子的定量构效(QSPR)模型,可用于缓蚀剂性能预测,并为轧制润滑添加剂分子的设计和合成提供参考和指导。项目执行期间,主办全国金属加工润滑技术研讨会一次,就项目中期成果进行研讨;参加境外国际学术会议三次,并做分组报告或墙报展示;发表学术论文19篇,其中SCI期刊收录13篇,EI期刊收录5篇,中文核心期刊收录1篇;申请专利7项,其中2项已授权;培养博士研究生4名,硕士研究生2名,其中2名博士研究生和2名硕士研究生已顺利毕业。
{{i.achievement_title}}
数据更新时间:2023-05-31
结核性胸膜炎分子及生化免疫学诊断研究进展
敏感性水利工程社会稳定风险演化SD模型
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
Wnt 信号通路在非小细胞肺癌中的研究进展
表面吸附与分子间疏水缔合在水润滑体系中的协同效应研究
轧制界面非稳态润滑动力学特性研究
铜沉积/溶解中特性吸附离子与添加剂/缓蚀剂间交互作用机制
基于分子轨道理论的缓蚀剂分子结构设计及其复配协同效应研究