Four-Wheel independently actuated electric vehicle is a new type of vehicle, of which all wheels can be driven, brake and steered independently. Compared with conventional vehicles, the electric vehicle has more controllable degrees of freedom, and it’s steering, drive and braking system can be coordinated to ensure each tire of the vehicle having maximum adhesion margin through the integrated design of the chassis control system. At present, the studies on it in home and abroad are main focus on how to improve some single vehicle dynamic performance, and do not take the actuator characteristics into consideration. These don’t fully use the advantage of the vehicle’s features that it is drive-by-wire and with redundant actuators. Based on the already built platform of distributed electric vehicle with drive-by-wire, in the paper this project will do the following research: based on hierarchical optimization building the integrated control architecture for the distributed actuators, studying the reconfigurable strategy under some actuator fault, using deviation compensation strategy to solve the problem of synchronous control for multi-acuator. Through these researching, the project is to propose a multiple-target integrated chassis control strategy with fault-tolerance ability which can give full play to the vehicle’s performance advantages and improve the handling, stability, economy and reliability. The research results will provide theoretical foundations and technical supports for the development of the new-generation electric vehicle.synchronous control for multi-acuator. Through these researching, the project is to propose a multiple-target integrated chassis control strategy with fault-tolerance ability which can give full play to the vehicle’s performance advantages and improve the handling, stability, economy and reliability. The research results will provide theoretical foundations and technical supports for the development of the new-generation electric vehicle.
分布式全线控电动汽车是一种四轮可独立驱动\独立制动\独立转向的线控电动车辆。与传统汽车相比,它具有更多可控自由度。通过对该平台底盘集成控制系统的设计,可以发挥各车轮快速响应、独立可控的特点,有效提升整车的性能。目前国内外对该平台集成控制的研究是主要从改善单一动力学性能角度出发,且未将系统执行器的特性考虑到控制框架中,这样无法发挥该平台全线控、多执行器冗余的性能优势。本项目以已开发的分布式全线控电动汽车为原型,通过对分布式全线控电动汽车多级优化集成控制架构的研究、冗余系统的故障重构特性研究以及集成控制架构下的执行器的同步偏差耦合控制研究,拟建立一套具有故障容错功能、可以充分发挥该平台性能优势的多目标集成控制策略,使其达到最优的操纵稳定性和安全性,为新一代电动汽车研发并走向实用提供理论基础和技术支持。
本项目以四轮可独立驱动\独立制动\独立转向的分布式全线控电动汽车为研究对象,通过对其动力学特性的分析和底盘集成控制系统的设计,最大限度的发挥全线控、多执行器冗余的性能优势,提升整车的操纵稳定性和安全性。目前,本项目建立反映轮毂电机、转向电机的电磁特性和电控液压制动系统流体特性的高品质联合仿真模型,在此基础上进行动力学特性和可控边界范围分析;通过融合全车传感器信息,利用纵向力计算模型和HRSI轮胎侧向力模型建立了Unscented卡尔曼滤波状态估计器,实现车辆状态参数的实时估算;另外,本项目利用分层设计方法构建了多级优化的集成控制策略,实现纵侧向运控跟踪控制,同时在控制力分配环节引入失效因子,通过故障约束矩阵的调节实现性能的重构优化。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于隐马尔科夫的全线控轮毂电动汽车操纵稳定性关键问题研究
集成主动转向系统的分布式驱动电动汽车纵横向运动综合控制研究
分布式可重构容错系统的研究
可重构的再生能源分布式发电系统的优化与协调控制