Currently, the aviation industry is facing the dual pressures of declining of global oil resources and decreasing of greenhouse gas emissions. So the hot spot of international research is finding a new type of environment-friendly aviation kerosene. Among them, preparation aviation kerosene with vegetable oils and animal fats has a good application prospect and a research value. Due to the complexity of the existing two-step catalytic method technical route and the difficult to application, the one-step method has become an important research field for the relatively simple technical route. But now the performance of unitary or binary metal constructed catalyst is limited, the selective and production rate of the product is lower, and the freezing point of products hardly meet application requirement. Based on these problems, this project will build a double function catalyst of catalyzing hydrogenation decarboxylation and selective cracking isomerizationuse directionally and efficiently by using BⅧ group elements and acidity material, and then aviation kerosene will be prepared by the oils and fats one-step method through the structure and form modulation. The method of regulating and controlling the microcosmic feature and size of catalyst will be explored and analyzed with the help of catalyst representation and analysis. The main factors which affect the catalytic selectivity and reaction efficiency will be explored systematically. The properties of different fats and oils will be analyzed by advanced instruments and techniques. Through the in-situ infrared technology, we will master the transformations of reaction pathway and the product distribution, and the intrinsic correlation and law of different oils and fats conversion behavior will be studied. The interaction and cooperatives effect between the active part of catalyst and base material will be clarified. This project will establish a theoretical basis for the development and application of new energy in the aviation field.
目前航空业面临着全球原油资源短缺和温室气体减排的双重压力,寻找更加环保的新型航空煤油已成为国际研究的热点,其中,采用动植物油脂制航空煤油具有良好的应用前景和研究价值。现有的二步催化法技术路线复杂,难以应用;一步法较为简洁,是该领域的研究重点,但现有的由一元或二元金属构建的催化剂性能有限,产物选择性和产率均较低,产品冰点难以满足应用要求。针对以上问题,本项目拟利用BⅧ族元素和酸性物质构建出具有定向、高效的加氢脱羧和选择性裂解异构化双功能的多元催化剂,通过结构和形态调变手段来实现油脂一步法制航空煤油。借助系统的催化剂表征与分析,探析精确调控催化剂微观形貌和尺寸的方法;探索催化剂对反应效率和选择性的关键影响因素;通过原位红外技术,掌握转化反应途径及产物分布,研究不同油脂转化行为的内在关联性与变化规律;阐明催化剂中活性组分和基质的相互作用与协同效应。为新能源的开发及其在航空领域的应用提供理论依据。
目前航空业面临着全球原油资源短缺和温室气体减排的双重压力,寻找更加环保的新型航空煤油已成为国际研究的热点,其中,采用动植物油脂制航空煤油具有良好的应用前景和研究价值。现有的二步催化法技术路线复杂,难以应用;一步法较为简洁,是该领域的研究重点,但因现有催化剂性能有限,产物选择性和产率均较低,产品冰点难以满足应用要求。针对以上问题,本项目开展了多元催化剂构建与调变方法研究、多元催化剂性能评价、动植物油脂一步法制航空煤油影响因素及催化转化过程研究,已构建具有加氢脱羧和选择性裂解异构化双功能的多元催化剂和催化体系,采用一步法将动植物油脂高效、高选择性催化转化为航空煤油;其催化加氢脱氧率96.76%,航油组分选择性67.69%,航空煤油组分(C8~C16)的异构化率55%,产品达到航空煤油的标准要求,催化性能指标具有显著的先进性,处于国际先进水平。催化剂构建体系的研究结果表明,活性组分的种类、含量及其在载体上的分散情况是影响催化剂催化加氢脱羧活性的重要因素,而载体的孔结构、酸性及酸量等是影响催化剂催化裂化、异构化选择性的重要因素。本项目获得了一种可使动植物油脂一步加氢制航空煤油的新型催化材料和合格的生物航空煤油产品,培养了12名硕士研究生和2名博士研究生,已发表学术论文12篇(SCI收录4篇、EI收录3篇)、已录用学术论文7篇(SCI刊源2篇、EI刊源4篇),申请中国发明专利3项;完成了申请书和任务书中预期的研究内容、研究目标和研究考核指标。本项目的研究成果将为新能源的开发及其在航空领域的应用提供理论依据,对缓解石油危机、推动航空业的高速发展以及有效减少温室气体排放具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
基于CdS和CdSe纳米半导体材料的可见光催化二氧化碳还原研究进展
CeO2-CuO-ZnO/γ-Al2O3催化剂与等离子体联合转化甲烷的实验研究
Co@C催化木质素衍生酚类化合物的加氢转化
糠醛合成航空煤油链烃的催化剂研究
制备生物质航空煤油前体的磺化炭固体酸催化剂的设计合成
微藻生物航空煤油/RP-3航空煤油混合燃料的着火与燃烧特性研究
植物油加氢制备可再生生物航空煤油新型催化剂的设计和机理研究