In recent years, it has put forward higher requirements for solid-state pulsed power source, with some civil technologies developing, such as atmospheric pressure cold plasma application, electric pulse medical, power equipment detection, and so on. The requirements are fast rise time, short pulse, adjustable pulse width, rectangular wave, high voltage output, as well as small size, repetition frequency and reliability. Unfortunately, current circuit methods, with some limitations, make it difficult to fully meet these requirements. In this project, a new method with solid-state modular multi-switch inductive pulse forming line (IPFL) stacker is proposed to break through the existing limitations, based on the related works with solid-state nanosecond short-pulse IPFLs. Firstly, the MOSFET switch characteristics and its high-speed driving methods are studied to achieve fast rise time, with transient strong electromagnetic field and distributed inductive load. Secondly, the high-reliability IPFL module and its multi-switching pulse width modulation method are studied to solve those problems, which are fast over-current protection, over-voltage protection and pulse width modulation. Finally, multi-module stacking method and stacker characteristics are studied to achieve high voltage output. It provides a new method and experimental basis for breaking through the technical bottlenecks with fast rise time (<2.5ns), short pulse (<10ns), rectangular wave, adjustable pulse width (5-10ns), high voltage (>10kV) and repetition frequency not less than 100kHz. It has important academic and practical significance for compact solid-state pulse power source technology.
近年来,大气压低温等离子体应用、生物医疗、电力设备检测等民用领域对固态脉冲功率源在快前沿、短脉冲、可调脉宽、方波、高电压并且兼顾小型、重频和可靠性等方面提出了更高的要求。由于现有电路方法的局限性,难以全面达到这些要求。故本项目基于前期对全固态纳秒短脉冲电感脉冲形成线相关工作基础,提出全固态模块化多开关电感形成线叠加技术的新方法突破现有的局限。首先,深入研究瞬态强场和分布式感性负载下MOSFET开关特性与高速驱动方法,实现脉冲快前沿;然后,研究高可靠IPFL模块及其多开关脉宽调制方法,解决快速过流过压保护及形成线脉宽调制难题;最后,研究多模块合成方法及叠加特性,实现高压输出,为综合突破快前沿(<2.5ns)、短脉冲(<10ns)、方波、脉宽可调(5-10ns)、高电压(>10kV)、重频不低于100kHz的技术瓶颈提供新方法和实验依据。对促进小型化固态脉冲功率源技术发展有着重要的学术意义。
近年来,脉冲功率技术向民用领域拓展对固态脉冲功率源在快前沿、短脉冲、可调脉宽、方波、高电压并且兼顾小型、重频和可靠性等方面提出了更高的要求。由于现有电路方法的局限性,难以全面达到这些要求。故本项目基于前期对全固态纳秒短脉冲电感脉冲形成线相关工作基础,提出全固态模块化多开关电感形成线叠加技术的新方法突破现有的局限。本项目深入研究了瞬态强场和分布式感性负载下MOSFET开关特性与高速驱动方法,实现了<3ns的脉冲快前沿;然后,研究高可靠IPFL模块及其多开关脉宽调制方法,解决了形成线脉宽和阻抗调制难题;最后,研究多模块合成方法及叠加特性,实现了10 kV高压输出,为综合突破快前沿(<2.5ns)、短脉冲(<10ns)、方波、脉宽可调(5-10ns)、高电压(>10kV)、重频不低于100kHz的技术瓶颈提供了新方法和实验依据。对促进小型化固态脉冲功率源技术发展有着重要的学术意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
坚果破壳取仁与包装生产线控制系统设计
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
基于螺旋脉冲形成线的多脉冲加速器的研究
激光触发低电感脉冲高压开关的研究
全固态高压纳秒级群脉冲发生器关键技术研究
基于磁开关和螺旋Blumlein脉冲形成线的重复频率高功率脉冲驱动源及相关技术研究