Currently, it is imminent to solve the problem of large-scale heavy-duty harbor crane’s design quality deterioration, resulting in material waste and increased energy consumption. This proposal aims to study and reveal energy flow and material flow integration and coordination mechanisms with respect to energy-saving and lightweight collaborative design for the container crane complex system. Considering time-varying, time-delaying system features, wind-structure interaction and nonlinear interface characteristics, the crane’s structure-mechanism, electromechanical and machine-environment multi-level coupled model is established and multi-physics coupling mechanism mathematical expressions are also created, to analysis the influence of microscopic interface characterization (e.g. the wheel-rail contact, hinge bearing clearance) on macroscopic function and performance (e.g. operating power consumption, structural performance and operating performance). Then, design elements or energy elements such as function, performance, feature, status, etc. are related by the design correlation matrix or equation, which is decoupled by dimensional analysis together with bond graph theory, mapping the relationship between parameters or variables which reflect the characteristics of design elements and energy elements. Thus, the function creation process during crane operation is formed by the energy flow-material flow integration and coordination. And the energy consumption factors are expected to find out. On this basis, the integrated design methods or measures of parameter matching, performance integration and structure or mechanism optimization for the crane, are proposed and validated with the use of theoretical simulation, similar model test and on-site test. The expected results will provide a theoretical basis for energy-saving and lightweight collaborative optimization design, can effectively promote environment-friendly technology progress in the field of port machinery design, and will help to save operation and construction costs for port facilities and equipment.
针对当前大型港口起重机材料浪费、能耗增加的设计性能劣化问题,以岸边集装箱起重机(岸桥)为具体对象,考虑岸桥复杂系统的时变、机电耦合、流固耦合和非线性界面特性,建立结构-机构、机-电、整机-环境多层次耦合模型和多物理过程耦合机制的数理表达式,分析轮轨接触摩擦、传动链间隙等微观界面特性对系统的结构与工作性能等宏观性能的影响。利用设计关联方程式建立功能、性能、特征、状态等设计和能量要素的联系;基于量纲分析法和键合图理论结合耦合界面特性解析设计和能量要素及其表征物理量的映射规律并确定能耗、材耗主要影响因子;从而揭示岸桥作业功能创成的能量流-物质流融合和协同机制。运用仿真分析、相似模型试验、现场实测等手段提出和验证岸桥性能集成、参数匹配以及结构、机构优化设计方法与措施。预期成果将为面向节能与轻量化协同的系统集成优化设计提供理论依据,推动资源节约型港口起重装备技术进步,有助于节约码头设施设备建设、运营费用。
针对岸桥等大型港口起重机以及装卸搬运设备的材耗/能耗增加等设计性能劣化问题,通过建立整机和子系统的动力源-机构-结构-环境多层次多领域耦合模型,研究轮轨相互作用、传动间隙等微观界面特性对系统宏观结构和工作性能的影响;在功能层对复杂系统分解和解耦,解析设计参数与功能性能表征物理量的关联映射规律以及能量流-物质流协同机制,旨在研究和发展起重机的节能与轻量化集成优化设计方法和技术。.①基于自由界面模态综合法发展的移动载荷(集装箱小车)-建造物(梁桥式结构)耦合振动分析方法可广泛用于装卸搬运设备的内外部随机激励下动力学响应快速计算;考虑外部风载荷和机电传动特性的小车-吊具系统动力学响应实时计算模型和算法,可用于模拟吊具对箱过程,是实现岸桥现场无人化作业的关键。此外,针对交变动载引发的动态特性劣化和疲劳裂纹问题,开发了相应的减隔振技术、结构优化应对措施以及焊缝疲劳校核分析程序。.②公理设计、TRIZ等通用设计方法可作为任一系统层次的功能分解/解耦、实现能量-物质融合的有效工具,可建立设计要素与能量要素(以至绿色要素等更加综合的性能表征要素)的关联模型、解析其之间的映射规律,从而揭示能量流-物质流协同机制。通过复杂系统功能解耦,各层次系统性能要求及其评价指标可依据相关设计规范或专家知识经验确定。.③综合运用了新型结构型式、铝合金新材料、能量反馈驱动、有限元优化等创新方法和技术,在WIT-A型巷道式堆垛起重机上实现了节能与轻量化协同的集成设计,该机型具有结构紧凑、绿色节能、快速高效、安全可靠等优点,可减重约 20%、节能 15%以上,达到了预期目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
中国参与全球价值链的环境效应分析
针灸治疗胃食管反流病的研究进展
高能耗行业中物质流、能量流与信息流的协同研究
大型钢铁企业能量流与制造流协同鲁棒优化方法研究
大型港口起重机械的紊流风载荷及抗风设计方法研究
基于物质流-能量流分析的农林废弃物制备低碳烯烃系统综合评价