In this project, Sm-Co-TM-(Al, Si, Cu)-(C, B) alloy systems will be created, in which an amorphous/nano-crystalline composite microstructure with the short-range ordered nano-cluster phases distributing uniformly on an amorphous matrix can bring about high coercivity. A series of alloys with different effective thickness including ribbons and bulks will be prepared using three types of technologies separately. Furthermore, the scientific truth for the preparation of amorphous matrix alloys with different compositions will be probed into by means of controlling the size, distribution and relative content of both the amorphous and nano-crystalline phases, determining the key constituent elements contributed to the high coercivity and optimizing the alloy composition and preparation processes. Besides, this research will also investigate the glass forming ability of amorphous matrix, the formation condition of nano-crystalline phases, the thermodynamic effect and phase-transition evolution mechanisms of alloys. Finally, the correlations among the microstructure, phase-structure, magnetic structure and coercivity mechanism are discussed, and based on which, the relevant theory systems will be built up to control the comprehensive magnetic properties of hard magnetic alloys with such a microstructure. In brief, this project broke through the traditional ideas of the design of Sm-based low-component amorphous systems and made the imperfections of low hard magnetic properties and poor practicality for alloys with a whole amorphous structure overcome. Simultaneously, this project will develop new multi-component hard magnetic alloy systems with amorphous/nano-crystalline composite microstructure and provide important theoretical and practical basis for the development and application of Sm-Co-type multi-component amorphous matrix alloys with high coercivity.
项目将构筑五元以上Sm-Co-TM-(Al, Si, Cu)-(C, B)合金体系,旨在获得一种非晶基体上均匀分布有短程有序纳米团簇相,即非晶/纳米晶复合微结构的高矫顽力合金。采用冷却速率不同的三种技术制备从薄带到块状等不同有效厚度的系列合金,控制合金中非晶与纳米晶相的相对含量、尺寸与分布,确定高矫顽力磁性能对应的关键成分组元,优化合金成分与工艺,建立不同成分非晶基合金的制备科学机制;分析决定合金非晶形成能力与纳米晶相形成的控制参数与相变演化机制,探讨该体系合金中相结构-微结构-磁结构-矫顽力机制之间的内在关系,建立控制此类微结构合金综合磁性能的理论体系。项目突破了Sm基低组元非晶体系的传统设计思路,解决了全非晶体系硬磁性能低实用性差的问题,将拓展新型多元非晶/纳米晶复合微结构硬磁合金体系,为高矫顽力Sm-Co型多元非晶基合金的开发和应用奠定重要的理论和实践基础。
项目构筑了系列五元以上Sm-Co-TM-(Al, Si, Cu)-(C, B)合金体系,获得了几种非晶基体上均匀分布有短程有序纳米团簇相,即非晶/纳米晶复合微结构的高矫顽力合金。采用冷却速率不同的三种技术制备从薄带到块状等不同有效厚度的系列合金,控制合金中非晶与纳米晶相的相对含量、尺寸与分布,确定高矫顽力磁性能对应的关键成分组元,优化合金成分与工艺,建立了不同成分非晶基合金的制备科学机制;分析了决定合金非晶形成能力与纳米晶相形成的控制参数、热动力学效应与相变演化机制,探讨了该体系合金中相结构-微结构-磁结构-矫顽力机制之间的内在关系,建立了控制此类微结构合金综合磁性能的理论体系。项目突破了Sm基低组元非晶体系的传统设计思路,为高矫顽力Sm-Co型多元非晶基合金的开发和应用奠定重要的理论和实践基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
Wnt 信号通路在非小细胞肺癌中的研究进展
基于LBS的移动定向优惠券策略
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
铁基非晶/纳米晶复合结构软磁合金条带弯折塑性的研究
多元体系准晶及非晶合金的成分判据
Fe基非晶软磁合金性能与微结构的关联性研究
α-Al纳米晶复合非晶Al合金微结构特性对耐点蚀作用机理研究