Zirconium-based amorphous alloy is severely constrained to apply in the field of high-end minimally invasive surgical instruments due to the special deformation and cutting characteristic during high speed machining process,such as viscous, crystallization, melting, burning and glowing. In this project, the glass forming mechanism, formation ability and influencing factors of vacuum die-casting large-scale medical zirconium-based amorphous alloy will be studied. And large size of medical Zirconium-based bulk metallic glass will be fabricated after the relationship of alloy composition-glass forming ability-biocompatibility-processability is established.The crystallization kinetics model driven by deformation and temperature will be established to reveal the muti-complex thermodynamic coupling deformation and processing dynamic crystallization essence. The machining mechanism of the glassy will be explained.Then, the precision machining process without crystallization based on the control of machining temperature and stress will be also researched . The mechanism of electrolytic plasma polishing of Zirconium-based bulk metallic glass and the surface integrity model will be established to get high efficient and no crystallization surface polishing in controllable way. Finally, this project studies the separation, gripping and clamping mechanism between typical minimally invasive surgical instruments and biological tissues. On the basis of Zirconium-based bulk metallic glass minimally invasive surgical instruments, such as ultra-sharp stainless scalpel, lossless of blood vessel clamp and precise suture grasping pliers, the precision and efficient design, fabrication and clinical application theory, manufacturing process and evaluation system will be established to develop the theory of glassy material processing and improve the level of high-end minimally invasive surgical medical instruments.
锆基非晶合金高速加工呈现粘性、晶化、熔化以及燃烧与发光等玻璃态物质独特变形与加工特征,严重制约其在高端微创手术器械的应用。本项目研究真空压铸大块医用锆基非晶合金的玻璃形成机制、形成能力及影响因素,建立合金成分-玻璃形成能力-生物相容性-可加工性的关联机制,实现大块医用锆基非晶合金压铸成型;建立加工变形-温度协同驱动晶化动力学模型,揭示多重复杂热力耦合变形与加工动态晶化本质规律;阐释玻璃态物质机加工特有现象的发生机制;研究基于加工温度和应力控制的表面无晶化精密加工工艺;建立电解质等离子抛光去除机理和表面完整性模型,实现高效可控表面无晶化抛光。研究典型微创手术器械与生物组织的切割分离、抓取、夹持机制;建立超锋利不锈手术刀、无损血管夹和精准牢固微创缝合抓钳等锆基非晶合金微创手术器械的精密高效设计、制造与临床应用理论、工艺和评价体系;促进玻璃态物质加工与生物制造理论发展,提高高端微创手术器械水平。
锆基非晶合金高速加工呈现粘性、晶化、熔化以及燃烧与发光等玻璃态物质独特变形与加 工特征,严重制约其在高端微创手术器械的应用。本项目深入研究了非晶合金微创手术器械精密高效制造理论与工艺方法,在大块医用锆基非晶合金水平真空压铸成型、大块医用锆基非晶合金切削、磨削与抛光、典型医用锆基非晶合金微创手术器械精密高效设计、制造与应用评价等方面都取得了一系列创新成果;掌握了水平真空压铸大块医用锆基非晶合金的玻璃形成机制、形成能力及影响因素,建立了非晶合金成分-玻璃形成能力-力学性能-生物相容性之间的关联机制;获得了高性能大块医用锆基非晶合金成型工艺方法;揭示了大块医用锆基非晶合金高速加工本质规律,阐明了其高速加工粘性、晶化、熔化与高温燃烧、发光等玻璃态物质特有的变形与加工特征形成机制,建立了可加工行评价方法,获得了大块医用锆基非晶合金精密高效绿色加工工艺与加工策略;揭示了电解质等离子抛光医用锆基非晶合金去除机理,获得了高质高效定量可控无晶化抛光工艺方法;掌握了超锋利非晶手术刀、新型非晶血管夹和新型非晶微创缝合抓钳等典型锆基非晶合金微创手术器械的精密高效设计、制造方法,建立了相应设计、制造与临床应用的理论、工艺及评价体系;最终形成了从大块医用锆基非晶合金高压真空压铸、高效绿色无晶化切削、高质量精密磨削、高效定量可控抛光,到典型微创手术器械精密高效设计、制造与应用评价的系统理论体系与工艺方法。.本项目丰富了大块医用锆基非晶合金的制备、切削、磨削与抛光加工理论及工艺方法,促进了非平衡玻璃态物质难加工材料制造理论与工艺的发展;填补了锆基非晶合金微创手术器械的设计、制造与应用理论空白;为微创手术器械以及生物制造领域相关研究的创新发展提供了新理论和新技术;提高了微创手术医疗器械的质量与水平;推动了大块医用锆基非晶合金的产业化与应用;同时促进了先进制造业发展与临床医学的进步。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
Wnt 信号通路在非小细胞肺癌中的研究进展
基于LBS的移动定向优惠券策略
面向精准微创手术器械的折展编织机构理论与刚柔转化机理研究
非晶合金晶化峰位置与晶化工艺参数间关系的研究
非晶合金不等厚壳体零件热态微冲锻成形工艺与机理
铝基非晶合金相图与微合金化