In our previou studies on electrochemisty, we successfully achieved C-H functionalization of methyl and methylene groups. These methodologies were applied to synthesis of aldehydes, ketones, ketonesters, ketoamides and sulfonyl amidines. In this study, we want to prepare some nanocatalysts with different sizes and morphologies by using electrochemistry, so the electrode can be modified with nanocatalysts. Then, we can have a research on the influence of those nanocatalysts with different physical properities on the catalytic efficiency of C-H functionalization, and have a better understanding on the electron transfer during C-H functionalization process. We hope the unactive C-H bond can be activated by taking advantage of the high efficiency of nanocatalyst. Besides, with the combination of electrochemisty, nanocatalysis and asymmetric catalysis, we hope we can furnish a one-pot asymmetic transformation directly from toluene or ethylbenzene derivatives and nucleophiles via C-H functionalization and subsequent nucleophilic attack. The method mentioned herein avoids the use of expensive and toxic transitional metals and strong oxidants, thus making it more atom economic and environmentally benign.
根据前期电化学研究,我们实现了甲基以及亚甲基C-H键官能团化,用来合成醛,酮,酮酯,酮酰胺以及磺酰亚胺,同时我们也初步研究了不同形貌纳米金属促进的羰基化合物的亲核加成反应。这里,我们期望通过电化学手段原位制备不同形貌,不同微尺度纳米粒子,从而对电极进行不同修饰,然后研究不同物理特性的纳米催化剂对C-H键官能团化的影响,研究电化学条件下C-H官能团化中电子转移规律。以期能利用纳米催化剂高活性的优势,将C-H键活化扩展到惰性的C-H键范围。此外,我们也期望通过电化学活化、纳米催化和手性诱导的组合,直接实现由甲苯或者乙苯衍生物出发,经C-H键官能团化形成羰基中间体,然后和亲核试剂发生 "一锅法"的不对称转化。此方法能够避免使用昂贵且具有毒性的过渡金属和强氧化剂,具有原子经济性高,环境友好的优势。
通过化学与电化学手段原位制备不同形貌,不同微尺度纳米粒子,从而对电极进行不同修饰,然后研究不同物理特性的纳米催化剂对C-H键官能团化的影响,研究电化学条件下C-H官能团化中电子转移规律。我们通过电化学活化、纳米催化和手性诱导的方法组合,实现由甲苯或者乙苯衍生物出发,经C-H键官能团化形成羰基中间体,然后和亲核试剂发生反应,实现交叉偶联反应,将C-H键活化扩展到惰性的C-H键范围,例如电化学条件下芳环上亚甲基选择性氧化、羰基化合物alpha-C-H与胺(二氧化碳)的交叉偶联反应,电化学脱羧偶联反应和水相不对称Henry反应。此方法避免使用昂贵且具有毒性的过渡金属和强氧化剂,具有原子经济性高,环境友好的优势。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
钯催化含C-H键官能团化的不对称多米诺反应
铜催化的C-H键官能团化反应研究
氮原子α位C-H键的官能团化研究
不对称C-H键官能团化构建平面手性二茂铁化合物研究