Owing to the large-scale grid integration of the renewable energy power generation, there are more urgent requirements for the construction of regulation power source. However, due to the restriction of its own structure feature, the thermal power unit, which plays a predominant role in the power grid, has a limited regulation capability. How to resolve the conflicts and realize a win-win situation for thermal power generation and renewable energy power generation, has become the urgent matter for the development of alternate electrical power system with renewable energy sources. In this project, with the functional localization of regulation power sources, a new type of thermodynamic system of thermal power unit based on an energy stored additional thermodynamic cycle is proposed. At first, from a thermodynamic perspective, an additional thermodynamic cycle is designed to utilize the stored thermal energy with high efficiency and high energy grade. Accordingly, a parameterized analysis model of the energy stored thermal power unit is established. Then, the performance evaluation index system of the energy stored thermal power unit is built, which includes the energy comprehensive utilization efficiency, the load regulating range and so on. Afterwards, based on the model and the performance evaluation index, the optimization is conducted to find the optimum structural parameters of the thermodynamic system of the energy stored thermal power unit. Finally, the dynamic characteristics of the energy stored thermal power unit is analyzed and its peak regulation modes is studied. This project will enhance the regulation capability of the thermal power unit, and further enhance the capacity of the grid to absorb the renewable energy power generation. What's more, the research results provide a new idea and direction for the development of the thermal power unit in the future alternate electrical power system with renewable energy sources.
新能源发电的大规模并网带来了电网对调节电源的迫切需求,而当前占电源主体地位的火电机组受自身结构特点的限制,调节能力十分有限。如何化解矛盾,实现火电发电和新能源发电的双赢,是新能源电力系统发展的当务之急。本课题以调节电源为基本功能定位,提出一种基于储能型附加热力循环的新型火电机组热力系统。首先,从热力学视角出发,设计能够高效高品位利用储热的附加热力循环构型,并建立储能型火电机组参数化分析模型。然后,构建包含能量综合利用效率和负荷调节范围等指标在内的储能型火电机组性能评价指标体系,并基于此进行优化,获得储能型火电机组热力系统的最佳结构参数。最后,分析储能型火电机组的动态特性,并研究其调峰运行方式。本项目研究成果泥将提升火电机组调节能力,进而增大电网对新能源发电的消纳能力,也为火电机组在未来新能源电力系统中的发展提供新的思路和方向。
新能源发电已经成为未来能源战略的重要发展方向,但由于新能源具有间歇性和波动性,其大规模并网存在较大困难,进而带来了电网对调节电源的迫切需求。而当前我国火电机组仍占电源主体地位,但受自身结构特点的限制,调节能力十分有限。针对能源电力领域的这一突出矛盾,本项目以调节电源为基本功能定位,提出了一种基于储能型附加热力循环的新型火电机组热力系统,旨在实现火力发电和新能源发电的双赢。研究内容包括以下三个方面:储能型火电机组热力系统的设计及其热力学建模、储能型火电机组性能评价指标体系构建及其性能优化、储能型火电机组的动态特性与调峰运行方式。首先,通过在常规火电机组上引入储能型附加循环,构建了4种不同的储能型火电机组热力系统构型:基于汽包抽水附加循环方案的储能型火电机组热力系统、附加循环排汽作为0号高加加热汽源的汽包抽水超高背压储能型附加循环火电机组热力系统、基于附加循环驱动给水泵的储能型火电机组热力系统和基于旁路附加循环的储能型火电机组热力系统,并分别建立了它们的热力学模型。然后,构建了用于分析储能型火电机组的性能评价指标体系,定义了往返效率来衡量储能型附加循环对所储存能量的综合利用程度。在此基础上开展了系统结构参数优化研究,结果表明,构建的储能型火电机组的往返效率能达到55%以上,同时可以有效提高机组的调峰范围。最后,在分析储热系统的热力学与动态特性的基础上,研究了储能型火电机组的动态特性,揭示了影响储热系统性能和储能型火电机组动态特性的关键因素。基于遗传算法研究了储能型火电机组的调峰运行,提出了相关的优化运行方式。结果表明通过优化运行,可有效提高火电机组的热经济性。本项目的实施将提升火电机组调节能力,进而增大电网对新能源发电的消纳能力,也为火电机组在未来新能源电力系统中的发展提供新的思路和方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
拥堵路网交通流均衡分配模型
储能系统辅助火电厂AGC调频的动态协同运行特性研究
尾流动态特性对海流能发电多机组阵列布局的影响研究
储能式液压型风力发电机组平稳输出与调频控制方法研究
混合储能系统改善鼠笼式风电机组性能控制方法研究