The dynamic mechanical response of ceramic composite armor with stepwise graded metal foam core is investigated in this project, which achieves light weight of the ceramic composite armor with high ballistic performance. Because the stepwise graded metal foam is used to improve the ballistic performance of ceramic composite armor by reinforcing the energy absorption of the back plate, the stepwise graded metal foam with good dynamic mechanical properties and energy absorption is the key factor that decides the ballistic performance of the ceramic composite armor with stepwise graded metal foam core. In this project, stepwise graded aluminium foam composites are laminated by open-cell aluminium foam layers with different densities, the split Hopkinson pressure bar apparatus and related loading technique and test method are revised, which are used to investigate the dynamic mechanical properties and deformation mechanism of stepwise graded aluminium foam and sandwich plate. The effects of graded density, number of layers and thickness of layers on the propagation of the stress wave and energy asbsorption performance of stepwise graded aluminium foam are analyzed. Based on numerical simulation model which is verified by experimental results,the method to develop the precision response surface surrogate model of dynamic energy absorption of stepwise graded aluminium foams is studied, which is used to develop the parameterized optimization design model for the dynamic energy absorption of the stepwise grade aluminium foams. The mechanism of load transfer among the layers in ceramic composite armor is investigated by the penetration experiments, and the ceramic compoiste armor with stepwise graded alminium foam core is designed by parameterized optimization model,and the dynamic analytical model of ceramic composite armor with stepwise graded aluminium foam core is also developed, which provided the theory for the application of stepwise graded aluminium foam in composite armor. So, the work of the project has an important scientific significance and engineering application value.
本项目拟研究含阶梯梯度泡沫金属芯层的陶瓷复合装甲的动态力学响应,以实现高性能陶瓷复合装甲的轻量化。阶梯梯度泡沫金属通过增强复合装甲背板吸能特性从而提高其抗弹性能,因此,具有良好动态力学性能和吸能特性的阶梯梯度泡沫金属是设计高性能陶瓷复合装甲的关键因素。本项目采用不同密度的均质开孔泡沫铝合成阶梯梯度泡沫铝复合材料,通过改进霍普金森压杆装置和加载技术及测试方法,研究阶梯梯度泡沫铝及其夹芯板的动态力学性能和变形机理,分析密度梯度、层数和厚度对应力波传播和吸能特性的影响;建立数值计算模型且与实验结果验证,研究高精度响应面代理模型建模方法,建立阶梯梯度泡沫铝参数化优化设计模型;通过开展侵彻实验,研究陶瓷复合装甲各层间载荷传递机理,设计且优化含阶梯梯度泡沫铝芯层的陶瓷复合装甲并建立动力学响应模型,为梯度泡沫金属在复合装甲的应用提供理论基础。因此,本项目的研究具有较大的科学研究意义和工程应用价值。
陶瓷复合装甲主要由高硬度面板、陶瓷和高韧性背板组成,在其抗侵彻过程中,陶瓷层使得弹体发生破碎或弹头钝化从而增大侵彻阻力,高硬度面板用于约束陶瓷层并使得陶瓷碎片与弹体充分相互作用,高韧性背板用于吸收弹体剩余的动能,从而达到抗弹的目的。因此,开发高性能的陶瓷和高吸能特性的背板是提高陶瓷复合装甲抗弹性能的两大主要途径。本项目围绕研究和开发高性能的陶瓷复合装甲背板,分别开展了泡沫铝及其夹芯结构在冲击载荷下的动态力学响应和吸能特性,得到了泡沫铝在高应变率下的动态力学响应和吸能特性,分析了泡沫铝夹芯梁在冲击载荷作用下的破坏机理;开展了薄壁结构的屈曲机理和吸能特性的研究,分析了压痕和应力波对薄壁方管坍塌和吸能特性的影响;研究了侵彻载荷下陶瓷碎片材料的抗侵彻性能研究,分析了陶瓷碎片颗粒大小对弹体的侵蚀效应;开展了爆炸冲击载荷下多层结构的破坏机理,分析了应力波在不同介质层中的衰减规律,为设计高性能陶瓷复合装甲背板提供理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
内点最大化与冗余点控制的小型无人机遥感图像配准
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
陶瓷/泡沫铝复合装甲动态力学响应研究
剪切增稠液填充泡沫铝/陶瓷复合装甲抗侵彻机理研究
装甲陶瓷材料的动态性能研究
基于乘员毁伤防护的金属点阵梯度复合材料军车防雷装甲研究