Lightweight hexagonal magnesium alloys have been widely used in the aerospace and automotive industries in recent years due to their high performance. However, their ductility is poor at room temperature because of the easy slip of a-dislocation cannot accommodate strains along c-axis, the activation of twinning can help alleviate the problem. The solute atoms of alloying elements have important effects on twinning; however, the physical mechanism is still unclear. This project aims at solving the physical mechanism of nucleation and growth of twinning in magnesium solid solution from experiment and theoretical calculations, seeking new method for acquiring magnesium alloys with both high strength and good ductility at room temperature. Firstly, the size and chemical interactions between solute atoms (Y, Zn, Al and Li) and twinning stacking fault will be calculated from first-principles calculations. In combination with Fermi-Dirac function distribution of solute atoms, the generalized stacking fault energies (GSFEs) at room temperature can be computed, and the distribution of solute atoms in twins will be calculated from Peierls-Nabarro model; further, the structure of twinning and mechanical properties of magnesium alloys will be investigated. This theoretical investigation may give profound knowledge about twinning in magnesium and improve the accurate calculation method of twinning. Based on the calculation, the optimum proportions of solute atoms will be added to magnesium for designing high quality magnesium alloys at room temperature. Then, the transmission electron microscope (TEM) is used to study the processing, microstructure and proportion of twinning and their effects on mechanical properties of magnesium alloys. Finally, the high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) is employed to observe the distribution of solute atoms around the twinning boundary, and results will be compared with theoretical results to rectify it. The results of the project may provide useful information for developing high quality magnesium alloys.
六方晶系镁合金由于其优异的性能在汽车、航空航天等领域有广泛的应用。但a位错不能协调c方向应变使得其室温塑性变形能力较差,如启动孪生变形机制则可以产生均匀变形。合金元素溶质原子对孪生有重要的影响,但其机理研究尚不透彻。本项目拟从实验和计算模拟两方面对镁固溶体孪生机理进行研究,探索室温高强韧性镁合金的新思路和新方法。首先通过计算确定Y、Zn、Al、Li原子与孪晶层错的尺寸和化学相互作用,结合费米-狄拉克分布求出室温广义层错能曲线,运用P-N位错模型得出溶质原子在孪晶内分布情况,进而研究镁固溶体孪晶结构和力学性能,完善镁合金孪晶理论和精确计算方法。找出较佳的几种原子配比,制备出室温高强韧性镁合金。运用TEM测定孪生过程、结构和比例及其对力学性能的影响。并进一步运用高角环形暗场扫描透射电镜确定Y、Zn重原子在孪晶界的分布,与理论对比,修正理论参数,结果可以为高性能镁合金研究提供理论依据和新思路。
镁合金由于其优异的性能在电子、汽车、航空航天工业等领域有着广泛的应用。但由于六角密排的结构使得其室温塑性变形能力较差,进一步孪生则可以产生均匀变形,溶质原子对孪生有重要的影响,但其机理目前研究不透彻。本项目系统研究了镁各面的广义层错能,合金化元素Y、Zn、Al、Li对镁固溶体合金基面位错的影响,39种溶质原子对镁固溶体基面孪晶形成能力的影响以及35种元素对(10-11)、(10-12)、(10-13)孪晶的影响。发现(1)孪晶易于在(10-11)、(10-12)、(11-22)、(10-13)、(10-15)面上产生;而(10-14)、(11-21)面难以形成孪晶。(2)均匀分布时,溶质原子对镁基面位错的分解影响非常小,300K时,Zn、Al、Li溶质原子对基面位错的分解宽度影响依然很小,但Y溶质原子的影响却很大。300K时Mg–8 at.%Y合金刃位错的分解宽度可以从3.96 nm增大到12–36 nm,与实验值20–30 nm符合很好。溶质原子可以提高镁合金基面位错的力学性能,且其效果从Y、Zn、Al到Li依次降低。Y原子在高温下仍然可以极大提高基面位错的力学性能,这与实验发现的结果是相同的。(3)广义平面层错溶质原子相互作用随着与层错面距离的增大而越小。随着溶质原子与形变内禀层错I2的总相互作用能的增大,溶质原子与广义层错其他关键点的总相互作用也越来越大,呈出线性关系。基于此种相互作用我们采用均匀分布模型研究了溶质原子的浓度分布对镁固溶体合金基面孪晶形成能力的影响,发现随着浓度的增加,少数常规元素K,S,Sr,Zr,As等,以及大部分稀土元素提高镁合金基面的孪晶形成能力的程度也增加。B,P,Cs,Se,Er,Tl等元素则越降低镁合金的孪晶形成能力。(4)计算了镁(10-11)、(10-12)、(10-13)孪晶能,分别为81.9、121.4、72.4 mJ/m2,,与他人的实验结果符合很好。进一步我们计算了35种元素与以上三种孪晶之间的相互作用。发现所有元素均可以降低孪晶能,稀土元素影响较大。这主要是由于三种孪晶均存在正负应变,半径比镁大的将偏析在膨胀区,而那些半径较小的元素将偏析在压缩区,从而使得孪晶能均呈现减小的趋势。该项目的顺利实施将为丰富和发展镁合金塑性变形机制奠定理论基础,为研究高强韧性镁合金提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
特斯拉涡轮机运行性能研究综述
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
地震作用下岩羊村滑坡稳定性与失稳机制研究
准晶强化双相Mg-Li-Zn-Y镁锂合金腐蚀行为与微结构的关系研究
Mg3Zn6Y准晶强化的Mg-Li-Zn-Y合金微观组织及力学行为研究
孪晶结构镁基单相固溶体合金的变形与力学行为研究
低层错能Cu-Al合金中纳米尺度退火孪晶的形成机理及其对力学性能的影响