It is an active research trend in the domain of current molecular recognition and biosensors to construct biomimetic molecular probes and molecular devices from the biomimetic molecular recognition systems combined with nanomaterials and nanotechnology. Based on our research works on the molecular recognition systems of pyrrole/indole-based receptors for anions, amino acids, etc., as well as the electrochemistry sensing properties of nanomaterials modified electrodes, several carbon-nanomaterials will be used to efficiently load pyrrole/indole-based synthetic receptors for the construction of the electrochemical sensors. In this research project, a series of novel pyrrole/indole-based modified nanomaterials and their functionalized electrodes will be designed and fabricated by physical adsorption, covalent immobilization, and self-assembly methods, and the structures and physical-chemical properties will be characterized systematically by various spectroscopic and electrochemical analysis methods. The electrochemistry sensing systems for organic/inorganic anions and amino acids, which play fundamental roles in biological, chemical, medical and environmental processes, will be established. The electrochemical sensing behavior of the modified electrodes will be investigated systematically. The mechanism of recognition and electrochemical sensing of pyrrole/indole-based synthetic receptors in the solid-liquid interface systems will be also further explored, which will provide an extended strategy for the functionalized electrodes designing and application. Some new electrochemical analysis methods, with the highly selective preconcentration and separation, high sensitivity, peed and efficiency, will be established for the detection of micro or trace amount of target analytes in complex system. This work aims to expand the application of the molecular recognition systems of pyrrole/indole-based receptors, and further develop high selective and sensitive synthetic receptor electrochemical sensors based on biomimetic recognition systems.
基于仿生分子识别体系和纳米技术构建仿生传感分子探针和分子器件是当前分子识别及生物传感器领域活跃的研究方向。本项目结合吡咯/吲哚基受体对阴离子、氨基酸等生物分子识别作用的研究基础,以碳纳米材料为合成受体识别元件固定化载体,利用共价键合、吸附和分子自组装等化学和物理方法,设计制备吡咯/吲哚基合成受体纳米探针及其功能化修饰电极,利用各种谱学和电化学分析方法进行结构和理化性能表征。研究建立以有机无机阴离子、氨基酸等生物分子为目标分析物的识别与电化学传感体系;系统考察合成受体纳米功能化修饰电极的电化学传感行为;阐明电化学传感的固液界面体系中吡咯/吲哚基受体对目标分子的识别作用、构效关系及其作用机理;揭示界面识别过程中电化学信号响应机制及其调控因素。建立针对复杂体系中微量或痕量目标分析物高选择性富集、分离和快速高效检测的电化学分析方法,发展基于仿生分子识别体系的高灵敏高选择性合成受体电化学传感器。
基于分子识别体系和纳米技术构建仿生传感分子探针和分子器件是当前分子识别及生物传感器领域活跃的研究方向。本项目结合吡咯/吲哚基合成受体的分子识别作用,开展了合成受体功能化修饰电极及其电化学传感行为研究。设计制备了系列官能化杯[4]吡咯基、二吡咯基和双吲哚基受体,以及系列新型NBD类、BODIPY类等反应型的合成受体,利用紫外可见光谱、荧光光谱、核磁共振谱、质谱等谱学分析方法,系统评价了各类合成受体对目标分析物的分子识别与化学传感性能。以碳纳米材料为合成受体识别元件的固定化载体,利用共价键合、涂覆和分子自组装等化学和物理方法,设计制备了系列吡咯/吲哚基合成受体纳米探针及其功能化修饰电极,系统研究了合成受体纳米功能化修饰电极对阴/阳离子、氨基酸等生物分子的识别与电化学传感行为,考察了合成受体修饰电极的构建方式和结构组成等对识别与电化学传感性能的影响。研究揭示了合成受体修饰电极电化学传感选择性主要取决于电极表面固载的合成受体对溶液中目标分析物的高选择性吸附和结合能力;碳基纳米材料的引入有效提高合成受体的固载量和稳定性,改善和增强了电极表面的电子传递性能,并能有效降低分析物的氧化还原电位。合成受体与碳基纳米材料协同作用下的“表面增强效应”有效调控了电化学分析检测的选择性和灵敏度。通过本项目研究,筛选并构建了系列吡咯/吲哚基合成受体电化学传感传感体系,实现了对复杂体系中微量或痕量目标分析物(如F−阴离子、金属离子、半胱氨酸等氨基酸分子、黄酮类天然产物分子、H2O2等)的高选择性富集分离和快速高效的电化学分析检测。同时,研究发展了对生物活性物质(如阴离子、活性氧ROS、生物酶、生物硫醇、H2S信号分子等)具有特异性精准分析检测的反应型合成受体及其分子设计策略,以进一步构建应用于生物体系中目标分子精准分析检测的新型光/电多通道化学传感器。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
智能凝胶颗粒几何修饰大孔电极及其电化学传感行为
功能化受体修饰的金纳米线阵列电极用于离子通道传感器研究
生物分子功能化碳纳米材料复合物修饰电极电化学传感分析的研究
生物分子功能化石墨烯修饰电极电化学传感分析的研究