The nuclear coolant pump is the most critical nuclear power equipment in nuclear power plant primary loop system . Its long-term stability, safe and reliable operation is very important to pump coolant、cool the reactor core、discharge heat discharge and prevent nuclear power plant accident.Loss of coolant accident would cause nuclear coolant pump pressure boundary damage and the overall pressure drop of primary loop, the core will be burned down because of inadequate cooling . The nuclear coolant pump must have enough idle time to provide more coolant for reactor cores after loss of coolant accident happened.The power-off transient rotation characteristics research in the LOCA is one of the biggest difference between the nuclear coolant pump and other types of pump.To meet the high performance requirements of the power-off transient rotation in actual loss of coolant accident as this project’s background, referencing on the basis of existing research achievements about the nuclear coolant pump, according to the characteristics of gas- liquid two-phase performance of the nuclear coolant pump in the loss of coolant accident conditions,taking the parameters in the nuclear coolant pump hydraulic parts influencing the transient flow in the nonlinear power-off transient rotation transient process as the breakthrough point,based on fully grasp of the nuclear coolant pump internal gas-liquid two-phase transient flow characteristics of the power-off transient rotation in the nonlinear transient process,to determine the main parameters influencing nonlinear power-off transient rotation in the nuclear coolant pump,constructing the power-off transient rotation model .Providing theoretical basis for China's nuclear power equipment to promote the technology level of critical nuclear power equipment.
核主泵是核电站一回路系统中最关键的核动力设备,其长期稳定安全可靠的运行,对冷却剂输送、堆芯冷却、热量排出及防止核电站事故发生极为重要。失水事故会引发核主泵压力边界破损及一回路整体压力下降,堆芯将因得不到充分冷却而导致烧干。出现失水事故后要求核主泵必须具有足够的惰转时间来为堆芯提供更多冷却剂。失水事故工况下对核主泵惰转性能的研究是核主泵与其它类型的泵最大区别之一。本项目以满足实际失水事故工况下高停机惰转性能要求为背景,借鉴现有关于核主泵研究成果的基础上,针对失水事故工况下核主泵汽液两相流的特点,以非线性惰转瞬变过渡过程中核主泵水力部件各因素参数对瞬变水力影响为切入点,在充分掌握非线性惰转过渡过程中核主泵内部汽液两相瞬变流动特性的基础上,确定影响核主泵非线性惰转的主要因素参数,构建核主泵非线性惰转模型。为推动我国核电关键设备技术水平提供理论基础。
核主泵是核电站一回路系统中最关键的核动力设备,其长期稳定安全可靠的运行,对冷却剂输送、堆芯冷却、热量排出及防止核电站事故发生极为重要。失水事故会引发核主泵压力边界破损及一回路整体压力下降,堆芯将因得不到充分冷却而导致烧干。出现失水事故后要求核主泵必须具有足够的惰转时间来为堆芯提供更多冷却剂。失水事故工况下对核主泵惰转性能的研究是核主泵与其它类型的泵最大区别之一。本项目以满足实际失水事故工况下高停机惰转性能要求为背景,借鉴现有关于核主泵研究成果的基础上,以非线性惰转瞬变过渡过程中核主泵水力部件各因素参数对瞬变水力影响为切入点,在充分掌握非线性惰转过渡过程中核主泵瞬变流动特性的基础上,确定影响核主泵非线性惰转的主要因素参数,构建核主泵非线性惰转模型,并通过动态仿真系统验证惰转模型的可靠性,为推动我国核电关键设备技术水平提供理论依据。探索不同转动惯量和不同管路阻力对核主泵惰转过渡过程的影响,获取惰转瞬变过渡过程中核主泵流道内的脉动压力特性,对比分析非线性惰转过渡过程不同阶段的动态压力频谱特征,为改善失水事故工况中的惰转性能和流动稳定性提供理论基础。发表学术论文14篇(SCI收录8篇,EI收录3篇);在核主泵水力设计与多学科优化设计方法、结构设计、高温高压试验台设计与制造等方面,获授权发明专利21项。在失水事故工况下核主泵非线性惰转过渡过程优化设计、数值、高温高压试验等方面培养培养硕士研究生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
内点最大化与冗余点控制的小型无人机遥感图像配准
核主泵非稳态运行工况下瞬变特性及机理的研究
气泡泵及其对ADS次临界堆瞬态及事故工况下的动态特性影响的实验与理论研究
核主泵汽液两相流动机理与瞬态特性研究
失水事故下锆合金包壳燃料元件关键特性研究