Medical micro-needle electrode array electrode (MEA) is an important sensor for bio-signal recording. However, MEA has not been applied in commercial field due to its complex fabrication process, easy break and instable measurement. Therefore, a novel MEA named magnetic tilted micro-needle electrode array (TMEA) is proposed in this project. TMEA is expected to own good strength with small puncture force. It is fabricated by self-assembly method under uniform magnetic field. Curable magnetic fluid droplet array can be drawn by magnetic force, form TMEA shape and finally cross linking solidify TMEA. The fabrication process is simple and effective. The research on TMEA includes: (1) fabrication principle of magnetization-induced self-assembly micro-needle array is microscopically observed and theoretically analyzed. Micro-needle array morphology is digitally characterized. Micro-needle array is finally actively fabricated. (2) Puncture mechanism of TMEA into skin is analyzed by FEA and experiments. Micro structure parameters of TMEA are topologically optimized. (3) TMEA-skin interface ion-electron transfer mechanism is established. Bio-signals recording performance, including electrode-skin interface impedance (EII), electromyography (EMG), electrocardiography (ECG) and electroencephalograph (EEG), is tested compared with standard electrode. The performance evaluation system of TMEA is built. In a word, TMEA structure optimization design, fabrication process and performance test will be eventually established on the basis of the above research work. We will own the core technology with independent intellectual property in the field of medical sensor and make contributions to the health cause of human kind.
医用微针阵列电极(微针电极)是测量人体生理电信号的重要传感元件,但因工艺复杂,易脆断,稳定性差等问题,至今无法商用。基于此,本项目提出一种新型的微针电极-磁性三棱斜针阵列电极(磁针电极)。磁针电极预期穿刺力小,强度大,精度高,成本低等。项目以磁针电极核心部件-磁针阵列为主要研究对象,创造性地提出了匀强磁场诱导磁流体液滴阵列自组装成形微针阵列并加热交联固化成型的方法。通过显微可视化技术及理论建模,揭示磁针阵列磁诱导自组装成形机理,数字化表征多/微尺度结构,掌握主动制造方法。采用有限元建模和实验验证方法,分析磁针阵列穿刺皮肤力学过程及其破坏机理,拓扑优化微针阵列结构。建立磁针电极-皮肤界面电子离子传输机理,探索磁针电极生理电信号及电阻抗特性,建立综合性能评价体系。最终形成一套完整的磁针电极制造、评价理论体系和加工工艺,在医用传感领域掌握具有自主知识产权的核心技术,为人类健康事业贡献力量。
微针及微针阵列结构在许多领域具有广泛的应用,目前关于微针的研究热点为微针的高效、快速制造及其应用研究。本项目以微针及微针阵列为主要研究对象,以微针制造为关键技术,开展了包括微针制造、结构优化、工程应用等方面创新性基础研究工作,建立集微针及微针阵列制造和应用为一体的一套完整研究体系。创新性地提出磁诱导自组装成形微针技术和牵引磁流变液自组装成形微针技术,解决了微针制造的难题,实现了微针及多级倒刺微针的高效、快速制造。建立微针阵列穿刺皮肤有限元模型,分析磁针阵列穿刺力学特性和破坏力学性能,为优化微针阵列结构提供理论依据。研制出多种柔性微针阵列电极,探索了微针阵列电极在生理电信号测量和皮下多元生物传感领域的研究。提出用金属注射成型技术和温度梯度热压成形技术制造多孔微针阵列,探索微针阵列在无痛经皮给药领域的应用,研制出微针阵列药贴,实现连续自控给药。基于磁流体自组装技术研制可弯曲微针阵列摩擦发电机和基于柔性微针的复合发电机,探索微针阵列在机械能收集和自驱动传感等方面的应用。用牵引磁流变液自组装成形微针技术制备了仿仙人掌针刺结构的倒刺微针,探索仿生针刺结构在仿生集水与液体定向输运方面的应用。开发了微样品力学加载实验系统、牵引磁流变液自组装成形微针数控制造装置和便携式膀胱尿量监测仪等设备。通过该项目的实施,项目负责人获 “2018年广东省科技创新青年拔尖人才”和“2018年珠江科技新星”称号。在Nano. Energy,ACS. App. Mater. Inter.,Adv. Electron. Mater.,Acta. Biomater,Adv. Mater. Tech.等杂志发表SCI论文24篇,其中IF>5的8篇,Q1分区15篇,申请国家发明专利17项,授权专利7项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
生物医用金属电极激光铣削-重铸加工成形及性能研究
高性能微通道换热器内凹形多孔微通道成形机理及性能研究
医用镁合金微细管精密成形机理及工艺控制研究
多色光学编码阵列磁致变色微球的制备及性能研究