It is critical to investigate the controllable synthesis of two dimensional atomic crystal materials with large scale and high quality and their layered stacked heterostructures, doping in a controlled manner and the tuning of their bandgap, fabrication of semiconductor devices and characterization of their device characteristics, such as carrier concentration, bandgap, mobility, current on/off ratios etc., for their future applications in semiconductor industry. Moreover, due to the special two dimensional layered structures of the semiconducting atomic crystal materials with thermoelectric properties, the efficiency of energy conversion and the power factor and figure of merit of the thermoelectric devices based on them will be greatly enhanced. Therefore, it is promising to investigate the performance of thermoelectric devices based on two dimensional semiconducting atomic crystal materials. In this project, we are proposing to controllable synthesize large scale and high quality two dimensional atomic crystal materials by chemical vapor deposition method through tuning growth conditions, construct their layered stacked heterostructures, dope them and tune their bandgap, investigate their basic carrier transport properties and understand the behind mechanism, investigate the fabrication process of thermoelectric devices based on these two dimensional atomic crystal materials and characterized their performance, and understand the thermotransport mechanism.
探索合成大面积、高质量的半导体二维原子晶体材料及其叠层结构以及对其进行可控掺杂的方法,研究其基本半导体器件性能,如载流子浓度、带隙、迁移率、电流开关比等,对于未来半导体二维原子晶体材料在半导体工业的应用具有重要意义。另外,具有热电性质的半导体二维原子晶体材料由于其特殊的二维平面结构,以及掺杂对电导率的提高和热导率降低的作用,其热电器件的性能将得到极大提升,研究基于半导体二维原子晶体的热电器件对于在高效率能量转换应用方面具有潜在应用前景。本课题将通过化学气相沉积(CVD)等方法,通过精确控制生长条件,制备大面积、高质量的半导体二维原子晶体薄膜,构筑其叠层结构,对其进行可控掺杂及带隙调控,研究其基本的载流子输运性质并理解其输运机制;探索基于半导体二维原子晶体薄膜材料的热电器件制作工艺,并对其热电器件性能进行表征,理解其热输运机制。
探索合成大面积、高质量的半导体二维原子晶体材料及其叠层结构以及对其进行可控掺杂的方法,研究其基本半导体器件性能,如载流子浓度、带隙、迁移率、电流开关比等,对于未来半导体二维原子晶体材料在半导体工业的应用具有重要意义。另外,具有热电性质的半导体二维原子晶体材料由于其特殊的二维平面结构,以及掺杂对电导率的提高和热导率降低的作用,其热电器件的性能将得到极大提升,研究基于半导体二维原子晶体的热电器件对于在高效率能量转换应用方面具有潜在应用前景。针对二维原子晶体中热电输运的关键科学问题,本课题开展了大面积、高质量二维原子晶体材料的可控制备,研究了其基本的载流子输运性质,探索了基于半导体二维原子晶体薄膜材料的热电器件的制作工艺,并对其热电器件性能进行了表征。取得了以下结果:1)掌握了大面积、高质量半导体二维原子晶体材料的生长工艺,理解了其生长机制;2)掌握了基于半导体二维原子晶体材料的霍尔器件、场效应晶体管、热电器件的关键制作工艺,并攻克了微观尺度下对半导体二维原子晶体材料进行热电测试的方法;3)对半导体二维原子晶体的迁移率、载流子浓度、电导率、电流开关比、塞贝克系数、功率因子等电学、热电性质进行了详细表征,实现了半导体二维原子晶体材料载流子浓度、电导率等的精准控制,对热电性能的影响规律进行了探索。.项目实施后共发表高水平论文15篇,其中包括Nano Letters 5篇,2D Materials 3篇,Advanced Electronic Materials 1篇,Nano Research 1篇,Nanoscale 1篇等。申请国家发明专利4项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
中国参与全球价值链的环境效应分析
基于二维材料的自旋-轨道矩研究进展
新型碳基二维原子晶体材料的控制制备、结构表征及应用探索
基于碳纳米管、纳米线的纳电子器件的制备和物性研究
新型二维原子晶体材料的生长及光电器件研究
新型铜基硫族二维原子晶体结构与物性的理论研究