High Pressure Processing (HPP) technology has great application potential in oyster industry because of its advantages in inactivating microorganisms and enzymes at ambient or low temperatures without obvious adverse effects on flavor, color, and nutritional properties. Researchers have reported the positive effect of HPP on biochemical, physical and sensory characteristics of oysters, as well as its active influence on high quality keeping and shelf-life extension. However, few papers have focused on the microbiological ecology of oysters with HPP treatment. Considering that specific microorganisms lead to spoilage of oysters during storage, this project will focus on the study of bacterial flora. Classical methods concerning food chemistry, microbiology, molecular and cell biology will be applied to analyze the microbial flora characteristics of raw oysters collected from different culture areas and in different seasons, as well as the changes in bacterial flora after HPP treatment and during the ice storage. Spoilage capability of different strains isolated from oysters will be investigated based on biochemical parameters determination and volatile compounds examined by Electrical Nose and GC-MS. Then, representative strains will be selected to study their changes in physiological characteristics and genetic materials after HPP treatment to reveal lethal mechanism of HPP. The biochemical basis of certain bacterial strains will also be analyzed to explore pressure resistance mechanism. This project will illustrate the differences of bacterial strains isolated from oysters in pressure resistance, discover the principle about how HPP changes the composition of bacteria and clarify the positive meaning of this microbiological ecology variation in oysters' storage. The expected results of this plan would be helpful in enriching basic theory of aquatic products processing and preservation, and promote the application of HPP technology in oyster industry. This research also have certain reference values for other bivalves.
超高压技术在牡蛎保鲜中具有巨大的应用前景,国内外学者研究了超高压对牡蛎感官品质、生化特征、贮藏特性等的影响,而有关超高压作用下牡蛎微生物种群结构变化的研究还较少,其变化的一般规律尚未明确。由于牡蛎腐败与细菌种类密切相关,本项目将以细菌菌群分析作为切入点,采用食品化学、微生物学、分子生物学和细胞学方法,研究超高压处理前后牡蛎的细菌菌群特征及冷藏过程中的动态变化,通过微生物侵染模型的构建分析不同菌株的致腐能力,在此基础上选取代表性菌株,研究超高压对其生理特征和遗传物质的影响,并分析耐压菌的适压生化基础。通过上述研究,将揭示超高压作用下牡蛎细菌菌群结构变化的一般规律,明确不同菌株在牡蛎品质劣化中的作用,阐明牡蛎中与腐败密切相关的细菌在超高压作用下的死亡或耐受机制。本项目将丰富我国水产品保鲜与贮藏的基础理论,促进超高压技术在牡蛎中的应用,对其他双壳贝类的保鲜加工也具有一定的参考价值。
超高压技术被认为是最具潜力的食品加工新技术之一,在以牡蛎为代表的双壳贝类加工中具有巨大的技术优势和应用前景。本项目以超高压对牡蛎中微生物种群结构影响及其作用机制为切入点,主要研究内容包括:1)牡蛎细菌菌群特征分析及冷藏中的动态变化;2)超高压处理对牡蛎菌群结构的影响;3)典型菌株在超高压作用下的死亡/耐受机制。.研究结果表明:.1)超高压可以实现双壳贝类的自动脱壳。100 MPa以下的压力处理基本不产生脱壳效果,而过高的压力会造成壳的破损,300 MPa/2 min的处理条件相对适宜。超高压处理基本上不会对牡蛎的外观、气味、质地等食用品质造成不利影响,且显著降低了牡蛎的初始细菌总数,4±1℃条件下货架期由6-8天延长至12天。.2)相对于传统的纯培养方法,高通量测序技术可以更加全面反映牡蛎体附着微生物的物种组成及丰度信息。牡蛎初始菌群以变形菌门、γ-变形菌纲、弧菌目、弧菌科为主,比例前三位的属依次为弧菌属(Vibrio)、希瓦氏菌属(Shewanella)和交替假单胞菌属(Pseudoalteromonas)。.3)超高压处理改变了牡蛎冷藏过程中的菌群结构。对照组腐败样本中,比例最大的是Pseudoalteromonas,其次为Shewanella。超高压处理组的牡蛎样本中嗜冷菌属(Psychrobacter)占有绝对优势,Pseudoalteromonas比例仅为0.8%,而Shewanella基本上被完全抑制,这对于水产品冷藏过程中的品质保持有重要意义。.4)超高压处理可以改变菌体细胞的通透性,导致细胞内容物的外泄,影响其正常的生理代谢。AKP、胞外还原糖含量、β-半乳糖苷酶活性等均是在150 MPa以下的压力条件下发生剧烈变化,而菌株存活率在150 MPa以上的压力处理时才发生显著下降。这表明尽管150 MPa以下的超高压处理造成菌体细胞通透性增大,但并未造成菌体的大量死亡。300 MPa以上的压力会造成菌体细胞形态的明显改变,出现菌体聚集成簇的现象。当处理压力达到450 MPa时,菌体出现明显的损伤,细胞彼此间的界限模糊不清,最终导致死亡。.项目研究成果丰富了我国水产品保鲜与贮藏的基础理论,对于推动超高压技术在牡蛎加工中的应用起到积极作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
农超对接模式中利益分配问题研究
基于细粒度词表示的命名实体识别研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
热压结合处理对低温火腿耐压腐败菌的破坏动力学及抑制机理研究
轻微加工水产品特定腐败菌靶向抑制及响应机制研究
大黄鱼特定腐败菌西瓦氏菌的群体感应及定植机制研究
凡纳滨对虾特定腐败菌群体感应信号分子的产生及调控机制研究