Subwavelength based artificial structures, with the functions of tailoring and manipulating optical properties purposefully and selectively, which has a broad application prospects in new energy, sensors, spectral detection imaging, stray light suppression, photon devices, nanoscale solar-thermal conversion and transmission and other fields. This proposal, being focused on the study of film performance based on transparent conductive oxide for spectral tailoring and manipulating, is carried out to achieve nanoscale optical control. By analyzing plasmonic properties of metals and transparent conductive oxides, the equivalent film structure is matched and composited: metal/transparent conductive oxide/glass substrate. The variation that dielectric constant of equivalent structure layers changes with carrier concentration of transparent conductive layers in optical frequencies is also illuminated, and film thicknesses will be optimized according to both Transfer Matrix and FDTD methods. To obtain the best material combination and its preparation condition, the composite nanostructured films with metal-transparent conductive oxide are deposited by electron beam evaporation and magnetron sputtering, respectively. Then the carrier concentration and thicknesses of transparent conductive layers can be controlled by further adjusting coating process parameters to experimentally obtain the film structures based on plasmonic properties of transparent conductive oxide which can tailor and manipulate spectrum. This research proposal provides the theoretical directions and technical supports for the final designs and fabrications of composite film structure based materials and devices with the functions of tailoring and manipulating the optical properties.
基于亚波长人工结构能够对光谱进行有目的、有选择性地剪裁与操控,在新能源、传感器、光谱探测成像、杂散光抑制、光子器件、纳米尺度光热转化与传递等众多领域都有着广阔的应用前景。本项目开展基于透明导电氧化物光谱操控与剪裁薄膜性能研究,实现纳米尺度的光学控制。通过分析金属薄膜和透明导电氧化物等离子体特性,匹配组合成等效薄膜结构:金属/透明导电氧化物/玻璃基底,阐明在光学频段等效结构层介电常数随透明导电层载流子浓度的变化规律,基于传输矩阵法和时域有限差分法优化薄膜厚度,分别采用电子束蒸发、磁控溅射成膜技术制备金属-透明导电氧化物复合纳米结构薄膜,筛选出最佳的材料组合及其制备条件,通过进一步镀膜工艺参数调控透明导电层的载流子浓度和厚度,在实验上获得基于透明导电氧化物等离子体特性具有光谱剪裁与操控的薄膜结构,为最终设计制备具有光谱剪裁和操控特性的复合薄膜结构材料和器件提供理论依据和技术支撑。
基于亚波长人工结构能够对光谱进行有目的、有选择性地剪裁与操控,在新能源、传感器、光谱探测成像、杂散光抑制、光子器件、纳米尺度光热转化与传递等众多领域都有着广阔的应用前景。本项目主要探索金属-透明导电氧化物复合等离子体薄膜在纳米尺度下光谱调控与剪裁性能。通过分析金属薄膜和透明导电氧化物等离子体特性,阐明在光学频段等效结构层介电常数随透明导电层载流子浓度的变化规律,基于传输矩阵法和时域有限差分法优化薄膜厚度,分别采用电子束蒸发、磁控溅射成膜技术制备金属-透明导电氧化物复合纳米结构薄膜,筛选出最佳的材料组合及制备条件,通过改善镀膜工艺参数调控透明导电层的载流子浓度和厚度,在实验上获得基于透明导电氧化物等离子体特性的具有光谱剪裁与操控的薄膜结构。经过项目实施,获得主要成果如下:(1)在金属薄膜等离子特性调控方面:通过二氧化碳激光器辐照银薄膜实现其可调谐局域表面等离子体共振特性;在室温下沉积具有线性厚度的银薄膜,其相关可调谐光学性质及拉曼散射由退火实现;激光诱导Al/Cu双金属纳米颗粒薄膜的制备及可调谐表面等离子体共振特性(SPR)的研究。(2)透明导电薄膜等离子体特性调控方面:在混合气体气氛下,通过变化退火温度实现了缺陷诱导ITO薄膜ENZ介电常数可调谐;采用Nd:YAG脉冲激光器在环境条件下实现了ITO薄膜介电常数近零点近红外范围内的调控。(3)在金属/透明导电复合薄膜等离子体特性方面:通过构建ITO/In-Sn双层结构,获得ITO纳米颗粒厚度决定的表面等离子体共振;基于图案化SiO2/Cu/ITO微结构,研究基于金属/电介质等离子体耦合效应的微结构吸收光谱的剪裁与调控。本项目涉及光学工程、凝聚态物理、材料科学、微电子学等交叉学科,通过探索研究,为开发更好的等离子体材料奠定实验基础、总结规律认识,为最终设计制备具有光谱剪裁和操控特性的复合薄膜结构材料和器件提供理论依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
硬件木马:关键问题研究进展及新动向
感应不均匀介质的琼斯矩阵
空气电晕放电发展过程的特征发射光谱分析与放电识别
基于混合优化方法的大口径主镜设计
多元透明导电氧化物薄膜光电性能的机理研究
基于CdO的透明导电氧化物薄膜的研究和应用
薄膜太阳能电池用高陷光性能透明导电氧化物薄膜的研究
多元氧化物结构复合式透明导电薄膜的研究