The environmental friendly, excellent thermal properties make the hydrofluorocarbons and hydrocarbons mixtures have a great application in the fields of low-grade energy utilization, refrigeration and air-condition. However, the thermophysical properties of hydrofluorocarbons and hydrocarbons mixtures need further investigation. The mixed model, the micro-mechanism of molecules, the prediction model of thermophysical properties of hydrofluorocarbons and hydrocarbons mixtures should be studied systematically. In the present project, the genomes theory of working fluid is proposed based on the relationship of molecular structure, proportion of ingredient and thermophysical properties of fluid. And the project will employ the molecular simulation and experimental methods, also accompany with machine learning and renormalization group theory, to investigate the thermophysical properties and genomes of hydrofluorocarbons and hydrocarbons mixtures. The interaction mechanism of atoms in hydrofluorocarbons and hydrocarbons mixtures will be investigated. The micro-mechanism of thermophysical properties in hydrofluorocarbons and hydrocarbons mixtures will be studied. The relationship of molecular structure, proportion of ingredient and thermophysical properties of hydrofluorocarbons and hydrocarbons systems will be revealed. And the prediction model of thermophysical properties of hydrofluorocarbons and hydrocarbons mixtures will be established. Also, the genomes database of hydrofluorocarbons and hydrocarbons mixtures will be improved. The research of this project will provide the basic data and theoretical support for the research and application of hydrofluorocarbons and hydrocarbons mixtures.
氢氟烃和烷烯烃混合工质兼具良好的环保性能和优秀的热力学性能等优点,使其在低品位能源和制冷空调领域具有巨大应用前景。但是对于氢氟烃和烷烯烃混合工质的热物性还有待深入探索,体系混合模型、分子微观作用机理以及热物性预测模型等还需系统地研究。本项目基于工质体系分子结构、组分配比和热物性间的构效映射关系,提出工质基因组的新理论。拟采用分子模拟和实验研究相结合的方法,借助机器学习和重整化群理论,开展氢氟烃和烷烯烃混合工质热物性和基因组的研究。探明氢氟烃和烷烯烃混合工质体系原子交互作用机制,揭示氢氟烃和烷烯烃混合工质热物性微观机理。深入探究氢氟烃和烷烯烃混合工质体系“结构-组分-热物性”的构效映射关系,建立氢氟烃和烷烯烃混合工质热物性普适模型,完善氢氟烃和烷烯烃混合工质基因组数据库,为氢氟烃和烷烯烃混合工质的研发和应用提供基础数据和理论支持。
氢氟烃和烷烯烃混合工质兼具良好的环保性能和优秀的热力学性能等优点,使其在低品位能源和制冷空调领域具有巨大应用前景。但是对于氢氟烃和烷烯烃混合工质的热物性还有待深入探索。本项目采用微观分子模拟、实验测试和机器学习等手段,围绕氢氟烃和烷烯烃等有机混合工质开展了热物性研究。基于微纳尺度界面蒸发过程,揭示了R1234yf、R1234ze(E)和R1234ze(Z)三种同分异构体分子因结构不同造成的热物性差异及蒸发相变驱动机制。针对非共沸混合工质建立了关于冷凝系数和势能差的理论模型,丰富了混合工质气液界面性质的分析方法。同时综合考虑流固界面作用、流体工质分子结构和组分比例,分析了混合工质的流固界面行为。围绕氢氟烃和烷烯烃有机工质的比热容、导热系数和临界温度优化了相应的预测模型。通过本项目的研究完善了基于基因组思想“分子结构-组分比例-热物性”的研究方法,同时可为新型氢氟烃和烷烯烃混合工质的研发和应用提供理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于SSVEP 直接脑控机器人方向和速度研究
基于混合优化方法的大口径主镜设计
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
夏季极端日温作用下无砟轨道板端上拱变形演化
氢氟烃和烷烯烃纯质及其混合物在离子液体中溶解度的研究
氢氟烃及烃类混合工质的汽液液相平衡研究
氢氟烃及烃类共沸混合工质的液相ρ-P-T-x特性研究
混合工质热物性研究