The goal of this proposal is to study the measurement and calibration of the charging electric field and the discharging current inside the circuit board of spacecraft. It also does feasible analysis. The energetic electrons in the space can penetrate the skin of the spacecraft and the shell of equipments, deposited in the insulator such as the pedestal material of the circuit board and the insulator layers of the cable. It leads to charging-discharging process that disturbs the electric systems even damages them. The charging-discharging process is one of the most important effects of the space weather. The deposition of the electrons causes the electric field in the insulator. The discharging occurred when the field is strong more than the threshold. The build of the field is related to the electron radiation by the conductivity of the insulator. The discharging event is determined by the threshold. Both of the the radiation-induced conductivity and the threshold are much complex, so that on-board monitoring of the electric field inside the insulator is very important. It can be a clue to study the conductivity and the threshold of the insulator under the space environment, and to enhance the prediction of the charging-discharging model. It can monitor the real time charging-discharging process to evaluate and alarm the harmfulness of discharging. It is onboard monitor of the charging electric field that can be an important way to study the charging-discharging effects inside the spacecraft, and to improve the related safty regulation of spacecraft. The main problems of the proposal include the study of the electric field, signal sample, and high impedance current amplifier. They will be solved by construction the physical model, Monte Carlo simulation, key techniques, and development of the trial machine.
本项目研究航天器电路板的在轨充电电场和放电电流测量方法、标定试验方法、以及方案可行性。空间高能电子可穿透航天器蒙皮和设备外壳, 嵌入内部绝缘介质(电路板基材、电缆绝缘层等)发生充、放电现象,会干扰甚至破坏航天器电子系统,是重要的空间天气效应。电子在电路板介质中沉积形成内部电场。电场建立过程取决于介质的电导率,电场建立以后是否放电取决于介质的放电阈值。此两个参数均具有很大的不确定性。介质内部电场的在轨监测非常重要,可以研究介质在空间辐射环境下的辐射感应电导率和放电阈值的变化,提高内部充放电研究水平。通过电场测量可以监测介质实际冲放电过程和放电电流,对放电危害进行预估和预警,并有助于修订相关航天电器安全规范。本项目研究关键点为:电场传感器研制、信号取样方法和高阻弱电流信号放大等,将通过建立物理模型、蒙特卡洛仿真、关键部件工艺设计和试验样机研制等途径实现。
研究了高能电子辐射下航天器电介质充电电流和充电电场的关系。采用GENT4模拟得出:电路板表层泄漏电流在不同的辐射环境、不同的电路板厚度等参数下均与充电电场存在很好的线性关系。提出采用电路板表面泄漏电流测量来监测充电电场和充放电效应的方案。该方案以最小代价(重量、功耗和成本)实现对充电电场和充放电效应的监测。开展泄漏电流的测量技术研究,研制出泄漏电流物理样机。开展内部电场直接测量的MEMS技术,研究芯片级的微音叉电场测量技术。研究了标定试验方案。.共发表研究论文12篇,其中SCI收录论文5篇,核心期刊7篇。培养博士研究生2人,其中1人毕业;硕士研究生2人,均已毕业。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
特斯拉涡轮机运行性能研究综述
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
航天器内部充电研究
电动汽车电场谐振无线充电理论与技术研究
近地球轨道航天器表面充电机理的研究和数值分析
有机光伏器件内部电场与性能关系及其调控研究