The combustion performance of metal fuels under rapid heating environment plays a key role in the energy releasing of metallized energetic materials. In this project, the thermal self-explosion refinement reaction characteristics of Al-based alloy fuel under transient heating were studied for the problems of lagging combustion reaction and incomplete reaction during the reaction of aluminum-containing composite propellant and mixed explosive. Firstly, the effects of stress intensity on the surface oxide layer of alloy fuel, physical and chemical properties of alloy fuel and heating rate on the thermal self-explosion refinement reaction of Al-based alloy fuel were discussed, and the combustion reaction rate equation controlled by thermal self-explosion refinement process was constructed. Combined with the "nuclear-shell" structure of Al particles under the rapid heating conditions, the model of thermal self-explosion refinement reaction of Al-based alloy fuel under transient heating conditions of alloy fuel is proposed. Spherical Al-based alloy fuel particles with core-shell structure will be prepared by adiabatic-closed high-speed centrifugal atomization guided by this theory. The thermal self-explosion refinement reaction characteristics of Al-based alloy fuels and their applications in metallized energetic materials systems were studied by high-energy density laser beam transient heating method and the closed container explosive product collection method method, to verify the correctness of the thermal self-explosion refinement reaction theory of alloy fuel transient temperature rise. The research results of this project are expected to increase the burning rate of micro-metal fuels to the level of nanometers, and at the same time, it is of great significance to improve the energy release rate of energetic materials and promote the development of high-energy energetic materials technology.
瞬态升温条件下金属燃料的燃烧效率对金属化含能材料的能量释放过程起到关键的作用。针对含Al复合推进剂及混合炸药反应过程中Al粉燃烧反应滞后、反应不完全等问题,开展瞬态升温下Al基合金燃料的热自爆细化反应特性研究。首先对氧化层应力强度、理化性能以及升温速率对热自爆细化反应的影响进行探讨,构建热自爆细化过程控制的燃烧反应速率方程,在此基础上,结合“核-壳”结构Al粒子在快速加热条件下熔胀溢出模型,提出瞬态升温下的Al基合金燃料热自爆细化反应理论。以此理论为指导,采用绝氧-闭环高速离心雾化法制备高沸点差Al基合金燃料样品,采用高能量密度激光束瞬态加热、密闭容器爆炸产物收集法等研究Al基合金燃料的热自爆细化反应特性及其在含能材料体系中的应用,验证热自爆细化反应理论的正确性。有望将微米金属燃料的燃烧速率提升至纳米级的水平,同时对于提高含能材料能量释放率、促进高能含能材料技术的发展具有重要意义。
瞬态升温条件下金属燃料的燃烧效率对金属化含能材料的能量释放过程起到关键作用。针对含Al复合推进剂及混合炸药反应过程中Al粉燃烧反应滞后、反应不完全等问题,开展瞬态升温下Al基合金燃料的热自爆细化反应特性研究。首先对氧化层应力强度、理化性能以及升温速率对热自爆细化反应的影响进行探讨,构建热自爆细化过程控制的燃烧反应速率方程,在此基础上,结合“核-壳”结构Al粒子在快速加热条件下熔胀溢出模型,提出瞬态升温下的Al基合金燃料热自爆细化反应理论。以此理论为指导,采用绝氧-闭环高速离心雾化法制备高沸点差Al-Zn、Al-Mg-Zn等铝基合金燃料,采用高能量密度激光束瞬态加热、密闭容器爆炸产物收集法等研究Al基合金燃料的热自爆细化反应特性及其在含能材料体系中的应用,验证热自爆细化反应理论的正确性。有望将微米级金属燃料的燃烧速率提升至纳米级的水平,同时对于提高含能材料能量释放率、促进高能含能材料技术的发展具有重要意义。发表论文9篇,其中SCI论文4篇。授权发明专利2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于细粒度词表示的命名实体识别研究
Al对溶剂法热镀Zn-Al合金界面反应的影响
自生Al2O3颗粒强化TiAl基合金组织微细化机理研究
外场作用下Al-Ti-C-Sr合金中Al-Ti-Sr相的凝固相变及细化变质机理
镁基水反应金属燃料燃烧的热声振荡机理研究