In recent years, the applicants succeeded in developing the ultra-high ductile cementitious composites (UHDCC), whose maximum tensile strength reaches 20MPa and the corresponding tensile strain exceeds 8%. To overcome the mechanical defect caused by layered overlay, the applicants plan to refer to the hierarchical and layered assembly in the super material-nacre (mother of pearl). Based on meso-mechanics and numerical analysis, in meso-scale, medium layer, fine asperities and mineral bridges are to be adopted to form a “crack deflection” based composite energy assumption system, and the variation of layer thickness is taken into account to achieve tensile-hardening effect by “deformed interlock”. A series of parametric studies are engaged to promise the material failing in a hierarchical and ordered way at the ultimate state. While in macro scale, according to the mechanical characteristics of RC column and beam, the specific layer-by-layer construction methods are to be respectively proposed to optimize the toughness and strength of structural members. The experimental test and numerical simulation will be used to figure out the mechanical origin of the assembled column and beam. Consequently, the theory for predicting the mechanical properties of the assembled structural members will be raised. The proposed study aims to develop fundamental theory and technical support for the future application of 3D building printing.
建筑3D打印是一种新兴建造工艺。但是由于传统的水泥基打印材料缺少足够的拉伸强度和延性,加之打印工艺会造成材料分层,大多数建筑3D打印实质是轮廓打印。只有在人工填充混凝土和钢筋后,3D打印的建筑才具有一定的承载力。.申请者已成功研发出拉伸强度达20MPa、对应拉伸应变达到8%-10%的高延性水泥基复合材料。为了克服分层打印造成的材料弱化,申请者拟仿生贝壳珍珠母的多尺度、多层次的组装结构,采用断裂力学和数值分析方法,在材料层面上,通过层间的表面颗粒、贯穿点、介质层等构造形成“裂缝偏转”的复合耗能机制;通过层厚的波动,形成“滑移互锁”的拉伸强化机制,从而实现材料在极限状态下的多级、有序破坏。在宏观层面上,通过结构力学试验和数值模拟技术,针对梁、柱构件的力学特点,研究不同分层形式的梁、柱力学性能的形成机理,并提出相应设计理论,为适用于3D打印的无筋建造提供理论基础和技术支撑。
混凝土3D打印是近年来新兴的建筑施工技术,是目前土木工程界的研究热点。传统的混凝土材料普遍存在抗拉强度低、拉伸应变能力差等缺点,同时在打印过程中难以实现同步布置钢筋,这是目前混凝土3D打印面临主要难题。因此,申请者参与研发了一种具有超高延性的可打印UHDC材料,对其打印工作性能和打印后力学性能各向异性、拉伸、弯曲尺寸效应以及断裂特性等进行研究,并在此基础上设计贝壳仿生梁、空腔梁和空腔板等构件。主要的研究内容如下:.(1)制备出适用于3D打印的UHDC配比。对1.0%、1.5%和2.0%三种纤维体积掺量下UHDC的打印工作性能进行定量评价,得到了最佳的打印开放时间区间及其对应的流动性能。.(2)进行不同纤维掺量下UHDC打印后力学性能各向异性试验,包括抗拉、抗压、抗弯和抗剪试验。提出了两个经验公式,对UHDC的各向异性及打印对其力学性能的影响进行定量评价。.(3)进行三种长度下(100、300、500 mm)现浇UHDC的拉伸试验,40~150 mm梁高范围内现浇UHDC缺口梁、60~500 mm范围内3D打印UHDC缺口梁的三点弯曲试验。推导出UHDC随机开裂增韧模型,提出UHDC开裂强度、抗拉强度和拉伸应变能力的“三重尺寸效应”。基于Bažant理论对UHDC弯曲尺寸效应进行讨论,使用断裂韧度评价了UHDC用于无筋3D打印的可行性。.(4)设计贝壳仿生梁和空腔梁,并进行四点弯曲试验。结果表明贝壳仿生梁承载能力和变形能力方面较整浇梁均有明显的优势。提出了适用于整浇梁、打印UHDC实心梁、贝壳仿生梁的抗弯承载力计算模型。.(5)设计带有蜂窝状和长方形状两种空腔形式的打印UHDC空腔板,并进行四点弯曲试验。结果表明空腔板的荷质比与实心板相当,空腔板的截面应变基本符合平截面假定。.(6)采用ABAQUS有限元软件建立了3D打印UHDC构件模型。将模拟结果等与试验结果进行比较,验证了模型的正确性。进行层间粘接强度和高宽比等参数分析,结果表明粘接强度在大于2.5 MPa时可认为UHDC层间粘接良好,空腔梁的高宽比最佳应取2.5~3.0。
{{i.achievement_title}}
数据更新时间:2023-05-31
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
3D-printed highly ordered Ti networks-based boron-doped diamond: An unprecedented robust electrochemical oxidation anode for decomposition of refractory organics
用于连续3D打印的仿生超低粘附光固化界面研究
强磁场织构化高强韧、抗辐照纳米层状类贝壳仿生结构陶瓷
基于3D打印技术的结构性人工骨仿生优化设计与制备
3D打印仿生磷灰石支架的成骨转化和再生研究