Sequential adsorption-plasma catalysis is a promising technology for waste gas treatment containing low concentration of VOCs,the bi-functional adsorbent-catalyst is one of the key factors influencing successful implementation of this technology. In this project, the core-shell structured Y zeolite@MCM-41 mesoporous silica composite was prepared by growing MCM-41 shell on Y zeolite core via a facile sol-gel coating strategy; then MCM-41 shell was modified using manganese ion and was further tailored by silylation to increase the hydrophobicity degree. The adsorption and non-thermal plasma (NTP) catalytic performance and mechanism of bi-functional material for VOCs were investigated. The quantitative structure-activity relationship between core-shell structured zeolite composite and its adsorption and NTP catalytic performance was discussed. In addition, carbon deposition inside the pores of bi-functional material and synergetic mechanism of NTP and catalyst were investigated during the NTP catalysis of VOCs. The study should be helpful to construct the bi-functional core-shell structured zeolite composite as adsorbent and catalyst for treating low concentration of VOCs.
序批式吸附-低温等离子体催化再生技术被认为是大风量、低浓度有机废气高效、低能耗处理方法之一,其中具有吸附-催化双功能材料是该技术实现的关键。本项目以Y型微孔分子筛为内核、MCM-41介孔分子筛为外壳,采用溶胶-凝胶法合成核-壳结构微孔/介孔复合分子筛(Y@MCM-41),通过对外壳硅烷化及锰掺杂处理,制备具有吸附-催化双功能的锰掺杂核-壳结构复合分子筛材料(Mn-Y@MCM-41);开展核-壳结构复合分子筛材料吸附、NTP催化降解VOCs的特性研究,阐明其核-壳结构与吸附、NTP催化性能之间的构效关系,揭示NTP和催化剂的协同作用以及催化剂表面的炭沉积机制,为构建锰掺杂核-壳结构复合分子筛材料用于低浓度、大风量VOCs序批式吸附-低温等离子体催化再生处理提供理论指导。
大风量、低浓度VOCs气体治理已成为大气污染控制中一个急需解决的问题,也是国内外废气治理领域的研究热点和难点。低温等离子体催化技术(non-thermal plasma,NTP)被认为是处理低浓度VOCs的有效方法之一。本项目以Y型微孔分子筛为内核制备了不同壳层厚度、具有显著“多级孔道”特征的核-壳结构分子筛(Y@MCM-41)。采用反相气相色谱法研究了典型VOCs在不同外壳厚度Y@MCM-41上的吸附平衡和动力学特性,揭示了疏水性介孔外壳减弱了水分对VOCs吸附的影响、加快了VOCs扩散;阐明了复合分子筛对于烃类VOCs的吸附,色散力在吸附过程中占主导作用;而对于醇、酯、腈类强极性VOCs,特定性相互作用对吸附过程贡献最多。探究了外壳MCM-41孔径、硅铝比、催化剂负载方法(一步合成法和浸渍法)等对活性组分MnOx微观结构及低温等离子体(NTP)催化降解甲苯的影响机制,研究了Y@MCM-41负载MnOx序批式吸附-NTP催化降解再生甲苯特性,阐述了外壳厚度、MnOx负载位置及负载量的影响,MnOx负载于内核Y上可增强甲苯的降解效率。以CO为探针分子,探究了NTP与催化剂的协同效应,NTP可促进催化剂晶格氧的流动,并产生除L-H途径外新的氧化途径;阐明了水分在等离子体催化过程中影响机制,高湿条件下NTP可以有效地促进氧迁移和加强了表面碳酸盐的分解,水分对催化活性的抑制作用是可逆的。本项目研究成果可为构建用于低浓度VOCs序批式吸附-NTP催化再生处理的核-壳结构复合分子筛材料提供重要支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
动物响应亚磁场的生化和分子机制
稀土掺杂双功能核壳结构纳米材料的研究
吸附-催化双功能材料用于低温去除苯系物研究
分子筛核壳结构催化剂构建与催化氧化含氯VOCs的抗氯机制研究
核壳结构MOFs对室内VOCs的吸附-光催化协同效应