Considering the motor driven rotation-spool method is difficult to output accurate and reliable high frequency vibration, applicants proposed a new structure to overcome the shortage of motor drive characteristics for high speed rotation-spool reversing valve. Based on the new structure, this project will analyze the influence rules of work condition, structure and interference of high-speed actors such as fluid force on the valve spool speed control and stability, propose a hydraulic control method with the goal of stable and controllable valve spool speed, and develop a hydraulic control unit of rotation-spool for the valve; study on the flow state of fluid in the hydraulic control unit and main valve core, reveal the change rules of the flow state with the structure size and vibration frequency and waveform, and propose an optimization match theory of the hydraulic control unit flow and main valve core flow with the purpose of uniform fluid resistance and dynamic characteristic; research the dynamic characteristic of the fluid in the reversing valve in high-speed reversing, establish a mathematical model of the flow field and pressure changes, and put forward a technology and structural design method of hydraulic impact suppression. On these basic theories and technologies a new optimization design method will be established and a series of new high-speed hydraulic control rotation-spool reversing valves and the experimental system will be developed. Expected outcomes will significantly improve the properties of rotary high-speed reversing valve, such as frequency and waveform quality, and satisfy the urgent demand for high-speed reversing valve with the development of hydraulic vibration technology.
针对电机驱动阀芯旋转方式存在难以获得精准可靠的高频振动问题,申请人提出了一种阀芯旋转式高速换向液控结构。围绕此新结构,本项目研究工况、参数和液动力等干扰因素对阀芯转速控制及其稳定性的影响规律,提出以阀芯转速稳定可控为目标的液控方法,研制阀芯转速液控单元;研究流体在液控单元和换向阀主阀芯流道中的流动状态,揭示流动状态随结构尺寸和振动频率和波形的变化规律,建立液阻和动态特性均匀为目标的高速换向阀液控流道与阀芯流道的优化匹配理论;研究在高速换向时换向转阀内的流体动态特性,建立流场和压力变化的数学模型,提出液压冲击抑制技术和结构设计方法。基此,开发出液控阀芯旋转式高速换向阀,研制相应的实验测试系统。预期成果将突破现有阀芯旋转式高速换向阀的频宽限制,显著提高其换向频率、波形质量和稳定性等,满足高速发展的液压激振技术对高频换向阀的迫切需求。
电液激振器具有激振功率大、推力大、无级调幅等优点,具有广阔的应用前景。然而当前激振器多以电机驱动阀芯高速旋转实现系统的高频换向,但电机驱动特性对负载相对敏感,难以实现实时补偿,因此对激振系统实现精准高频换向造成极大挑战。. 为了解决上述难题,本课题创新研制了一种液控阀芯旋转式电液激振系统,实现了精准高频振动的同时使频率突破了300 Hz。本课题的主要创新成果有:.(1)提出了阀芯流道结构参数优化匹配策略,得到了流道结构参数最优匹配方案,提高了系统性能。.(2)建立了系统的仿真模型,探明了动力学参数包括阀芯旋转速度、供油压力、液动力矩和负载,结构参数包括阀口数量、阀口形状、阀口轴向长度等对系统动态特性的影响规律。.(3)提出了阀芯转速鲁棒自适应控制策略,突破了传统控制方法难以实时补偿液压冲击负载的瓶颈,将转速控制稳态误差带宽度降低了50%以上,抑制液压冲击的同时提高了转速控制鲁棒性。. 发表和录用论文16篇,其中SCI/EI源期刊14篇;授权国家发明专利9项;已培养博士研究生3名、硕士研究生4名。. 全面完成计划任务书规定的研究内容和考核指标,达到预期目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
阀芯旋转式大功率电液激振基础理论和技术
直动-导控一体化2D电液比例换向阀关键技术的基础研究
基于2D电液比例换向阀的压扭放大驱动作用机理研究
基于液芯波导技术的微流控光学检测系统研究