High-performance PMSM(permanent magnet synchronous motor) driven system is the key component of the equipment such as CNC machine, industrial robots, solar array driven system and the space manipulator driven system. Based on the analysis of the typical flexible load, the major objective of the project is to propose an optimal control strategy for the type of high-performance multi-axis motion control applications mentioned above. The main content include but is not limited to: a) the system modeling and analysis of the system of flexible load driven by PMSM; b) the design of high dynamic current loop of PMSM; c) the design of the speed loop considering the characteristics of the flexible load. Firstly, as for the characteristic of flexible load, the mathematical model of the system will be built. Then the whole system will be analyzed and the mechanism of the resonance brought by the flexibility can be acquired. Secondly, as for the parameter changing problem, a practical system identification method will be proposed to identify the system parameters. Thirdly, as for the problem of the reduction or even system instability brought by the changing load inertia with the traditional controller, the root causes will be analyzed from a theoretical point of view. In the end, on the basis of the research, the lead-Lag corrector, the optimal control strategy, the robust control theory, the adaptive control and other control strategies will be combined to inhibit the resonance brought by the flexibility of the load. As for the requirement of high dynamic current loop, the predictive control method is planned to be optimized for the high dynamic response of the inner loop, which will provide support for the inhibition of the resonance in the speed loop.
高性能永磁同步电机伺服驱动器是数控机床、工业机器人、航天机构驱动、空间机械臂等设备的核心部件。本课题针对此类多轴高性能运动控制应用,基于其典型的挠性变惯量负载特征的分析,提出对永磁同步电机控制系统的优化控制方案。主要研究内容包括:带挠性变惯量负载的永磁同步电机控制系统建模分析,永磁同步电机高动态响应转矩内环设计,考虑挠性负载特性的永磁同步电机速度环设计方案等。首先对永磁同步电机驱动挠性负载系统进行建模与分析,提出通过系统辨识方法对系统参数进行辨识。针对负载惯量变化引起的驱动系统性能下降甚至系统不稳定问题,基于惯量在线辨识实现优化控制。综合利用校正网络、优化控制、自适应控制、鲁棒控制等方法实现对系统谐振的抑制。针对高动态响应要求,拟从电流环基于预测控制进行优化,实现快速内环动态响应,为抑制速度环谐振提供基础。
本项目深入研究永磁同步电机驱动挠性负载伺服系统,取得了几项创新性研究成果:提出了一种针对挠性关节和挠性连杆伺服驱动系统的统一动力学建模方法,相比传统建模方法具有通用性,并且参数更具有代表意义;将系统关键参数分为静态参数与动态参数两类,提出了一种两步方法对系统中关键参数进行辨识;基于所提出的高阶挠性负载统一建模方法:(1)提出了高阶挠性负载PI调节器的参数整定方法;(2)提出了一种基于模型的陷波滤波器设计方法;(3)通过将负载转矩和系统阻尼等干扰考虑在内,提出了一种基于状态反馈与负载转矩补偿的优化控制策略,在此基础上,利用极点配置策略对控制系统参数进行确定;(4)提出一种基于模型预测控制的控制方法,将负载惯量的变化等效为变化的扰动转矩,通过对扰动转矩的实时辨识反馈到模型预测控制器中进行补偿;基于经典双惯量模型:(1)基于反馈线性化和极点配置设计了一种能够完全消除关节振动的速度控制器,提出了一种基于模糊逻辑的参数自适应算法,能够根据指令和实际值的误差主动调整参数。(2)提出了一种基于内模控制原理的振动抑制算法,在位置环与速度环之间接入一个抑振滤波器,可实现低刚度关节伺服系统的末端振动抑制;搭建了挠性多关节实验平台和基于碳化硅器件的永磁同步电机控制平台。本项目所搭建平台可以集成上述的高动态响应、挠性变惯量负载控制方法,为工业机器人以及航天领域高性能伺服驱动提供技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
监管的非对称性、盈余管理模式选择与证监会执法效率?
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
不对称负载下盘式对转永磁同步电机的控制策略研究
单定子双转子对转永磁同步电机动态不平衡负载直接转矩控制研究
变参数挠性航天器姿态控制方法研究
永磁直线同步电机的能量整形控制研究