脉冲噪声环境下语音压缩感知系统的构建与理论研究

基本信息
批准号:61601248
项目类别:青年科学基金项目
资助金额:19.00
负责人:季云云
学科分类:
依托单位:南通大学
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:邹丽,李洪均,董蓉,郭莉莉,郭欣,朱志佩,陈蒋婧娴
关键词:
脉冲噪声统计特性压缩感知语音信号
结项摘要

Compressed sensing theory, based on sampling and compression, for speech signals, is emerging in recent years. Its purpose is to construct a comprehensive compressed sensing system for speech signals, replacing the traditional speech signal processing system based on the Nyquist sampling theorem. And the robustness is a very important index for the speech compressed sensing system. However, the existing speech compressed sensing system is just robust to the white Gaussian noise and the energy-limited noise. While the system is attacked by the impulsive noise, the original speech signal cannot be effectively reconstructed. Therefore, based on the different subspace theory of noise and speech signals and the Bayesian theory, two kinds of algorithms are proposed in this project using the statistical property and the structure property of the impulsive noise and speech signals, which makes the speech compressed sensing system robust to the impulsive noise in the respect of reconstruction. Moreover, the performance of the system can be analyzed in the theory. The results of the project can further improve the robustness of the speech compressed sensing system, which can provide theoretical support and technical scheme for the development of the next generation speech compressed sensing system.

语音压缩感知理论是近年来新兴的基于语音信号的采样、压缩理论,其目的是构造完备的语音压缩感知系统,取代基于奈奎斯特采样定理的传统的语音信号处理系统。语音压缩感知系统的一个重要指标是系统的鲁棒性。而现有的语音压缩感知系统仅对高斯白噪声和有限噪声具有鲁棒性,当系统受到脉冲噪声干扰的时候,无法有效地恢复出原始语音信号。为此,本项目分别基于噪声和信号的不同子空间理论和贝叶斯理论,利用脉冲噪声和语音信号的统计特性和结构特性,构建脉冲噪声环境下的语音压缩感知系统。提出两类不同的算法模块和特殊的观测矩阵模块,使语音压缩感知系统对脉冲噪声具有鲁棒性,并且从理论上分析系统的性能。本项目的研究成果可以进一步改善语音压缩感知系统的鲁棒性,为下一代语音压缩感知系统的发展提供理论支撑和技术方案。

项目摘要

语音压缩感知理论是近年来新兴的基于语音信号的采样、压缩理论,其目的是构造完备的语音压缩感知系统,取代基于奈奎斯特采样定理的传统的语音信号处理系统。语音压缩感知系统的一个重要指标是系统的鲁棒性。而现有的语音压缩感知系统仅对高斯白噪声和有限噪声具有鲁棒性,当系统受到脉冲噪声干扰的时候,无法有效地恢复出原始语音信号。为此,本项目分别基于噪声和信号的不同子空间理论,利用脉冲噪声和语音信号的统计特性和结构特性,构建脉冲噪声环境下的语音压缩感知系统。基于无监督学习和深度学习理论,提出了多种自适应的字典学习算法来为语音信号构造合适的冗余字典。并且,为噪声环境下提出了多种重构算法, 并将压缩感知理论应用到回放语音检测和单通道语音增强中。本项目的研究成果可以进一步改善语音压缩感知系统的鲁棒性,为下一代语音压缩感知系统的发展提供理论支撑和技术方案

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
2

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016
3

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
4

TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用

TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用

DOI:10.13692/ j.cnki.gywsy z yb.2016.03.002
发表时间:2016
5

Wnt 信号通路在非小细胞肺癌中的研究进展

Wnt 信号通路在非小细胞肺癌中的研究进展

DOI:
发表时间:2016

季云云的其他基金

相似国自然基金

1

乘性及矩阵噪声环境下的压缩感知测量方法研究

批准号:61701367
批准年份:2017
负责人:权磊
学科分类:F0111
资助金额:28.00
项目类别:青年科学基金项目
2

持续极强噪声环境下的语音增强方法研究

批准号:60572088
批准年份:2005
负责人:杨大利
学科分类:F0111
资助金额:25.00
项目类别:面上项目
3

听觉场景分析及其噪声环境下的语音识别

批准号:60272044
批准年份:2002
负责人:吴镇扬
学科分类:F0111
资助金额:20.00
项目类别:面上项目
4

基于压缩感知的OFDM系统的PAPR减小和切削噪声消除

批准号:61371114
批准年份:2013
负责人:王亚军
学科分类:F0103
资助金额:70.00
项目类别:面上项目