The quadruped robots have broad application prospects in the field of planetary exploration, military and so on. The biological model mapping method, bio-mechanism synthesis method, theoretical combined with simulation and experiments method are adopted to study the bionic coordinated bounding principles of musculoskeletal quadruped robot and biological stiffness planning, which will improve the mobility of the quadruped robot. ① Studying on the coordinated bounding principles of the musculoskeletal quadruped creature, multi-directional flexible bending principle with variable stiffness of the trunk and the joint variable stiffness principle of the biological leg. ② The bionic body with variable stiffness multi-directional flexible bending and the musculoskeletal bionic leg for the quadruped robot will be developed. ③The rigid-flexible coupling dynamics of the quadruped robot with the characteristic of the variable topology structure, discontinuous constraint will be overcome. ④The biological stiffness planning method is proposed based on foot equal elastic potential energy analysis. The foot stiffness and the biological stiffness model of the joint for musculoskeletal leg bounding can be obtained. The key technologies of the biological stiffness planning of the bionic leg bounding, the decoupling control on the position and stiffness of joint will be overcome. ⑤Finally, the quadruped robot prototype will be integrated and the experiments will be performed, including multi-directional bending of bionic body with variable stiffness, bionic bounding of the leg and the quadruped robot, which will verify the biological principles. The project will provide new theories, new methods and new technologies for improving the mobility of quadruped robot, and has important theoretical significance and applications value.
四足机器人在星球探测、军事等领域具有广阔应用前景。本项目采用生物模型映射法、仿生机构综合法等,研究四足仿生机器人骨骼肌肉协调跳跃机理,进而研究仿生腿关节的类生物刚度规划以提高四足机器人机动性。①研究四足生物骨骼肌肉协调跳跃机理、躯体变刚度多向灵活弯曲机理、生物柔顺跳跃的关节变刚度机理,确定四足机器人映射模型。②设计四足机器人多向灵活弯曲仿生机体和骨骼肌肉变刚度仿生腿。③建立具有变拓扑机构、浮动基、非连续接触约束特征的四足机器人刚柔耦合动力学模型。④提出基于仿生腿跳跃足端等弹性势能分析的关节类生物刚度规划方法,获得仿生跳跃的足端刚度和关节刚度模型,突破仿生腿跳跃关节刚度规划、关节位置和刚度同步控制关键技术。⑤开展仿生机体变刚度多向灵活弯曲、单腿柔顺跳跃、四足机器人跳跃实验研究,验证四足生物机理分析的正确性。项目研究为提高四足机器人机动性提供新理论、新方法和新技术,具有重要理论意义和实用价值。
四足仿生机器人在星球探测、军事等领域具有广阔应用前景,四足机器人远未达到四足生物的高机动性。本项目研究四足仿生机器人骨骼肌肉协调跳跃机理及仿生腿关节的类生物刚度规划,以提高四足机器人非结构化环境的机动性。主要研究内容为:.(1)分析了四足生物躯体和生物腿的解剖结构、肌肉分布及肌肉力特性。探究了四足生物骨骼肌肉协调运动机理,包括四足生物躯体变刚度多向灵活弯曲机理、生物柔顺跳跃的刚度自调控机理、躯体与腿骨骼肌肉协调机理。.(2)开展了气动肌纤维和肌纤维束特性分析,采用气动肌纤维束驱动设计了四足机器人的多向灵活弯曲仿生机体。采用串联弹性关节结构设计了气动人工肌肉驱动的仿生腿机构,具有轻量化、柔顺性、关节运动范围大等显著特点。.(3)气动人工肌肉的结构特性使其呈现出较强的磁滞特性,这增加了气动人工肌肉驱动的机器人系统控制难度。针对该问题,提出了改进的Maxwell迟滞模型,通过实验验证模型的准确性,构建气动人工肌肉的精确力模型,基于此建立仿生腿的刚柔耦合动力学模型。.(4)仿生腿跳跃的关节变刚度规划是实现柔顺跳跃的基础,提出基于仿生腿足端弹性势能分析的关节类生物刚度规划方法,获得仿生跳跃的足端刚度模型,并由雅克比矩阵建立了关节与足端刚度模型的映射关系。在此基础上,突破仿生腿跳跃的关节刚度规划、关节位置和刚度控制关键技术。.(5)完成了仿生机体的多向灵活弯曲实验,能实现侧向弯曲、俯仰弯曲角达40。设计的机体随气压变化具体良好的变刚度特性。完成了多自由度仿生腿的柔顺跳跃实验,跳跃高度达300mm,跳跃距离达400mm,验证四足生物仿生躯体动态弯曲和仿生腿变刚度跳跃机理分析的正确性。完成了四足机器人样机集成,开展跳跃实验研究。.项目研究为提高四足机器人机动性提供新理论、新方法和新技术,具有重要理论意义和实用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
钢筋混凝土带翼缘剪力墙破坏机理研究
仿生骨骼肌肉跳跃机器人的高能效驱动与控制
骨骼-肌肉结构柔性关节仿生四足机器人高速奔跑神经机制与运动能量分布研究
仿生肌肉-骨骼结构机械腿变刚度调控机理与控制研究
基于主-被动复合式变刚度柔性关节的四足机器人仿生机理研究