This project is aimed at the blasting case prevention and rapid detection of difficult and put forward the key scientific problems, to establish and develop on the basis of the molecular recognition of visual identification system, discusses the role of the relationship between and explosives, build cross response visual sensor arrays and fingerprint database, in order to achieve the purpose of rapid detection of trace explosives.First of all, the design synthesis of high selectivity and high sensitivity detection of aromatic explosives fluorescent dye, through the study of the different groups of side chain control the conduction band and valence band location, electronic structure, HOMO and LUMO energy levels, etc., with aromatic explosives specificity response of dye molecules, to achieve rapid and accurate identification of aromatic explosives;Secondly, by using non-aromatic explosives or secondary derivatives to induce the change of the original conjugate system or the luminescence mode, a series of visual dye molecules that enhance the interaction of charge transfer are established.Finally, based on the specificity of the dyes and explosives molecules recognition systems, the sifting high responsiveness of 3×3 array, by reasonably using the characteristics of explosive molecules (different electronic structure and size), combining with clustering analysis (HCA) and principal component analysis (PCA) to realize to the distinction between types of explosives accurate and efficient.
本项目是针对涉爆案件的预防与快速检测困难而提出的关键科学问题,旨在建立和发展以分子识别为基础的可视化识别体系,探讨与爆炸物之间的作用关系,构建交叉响应的可视化传感阵列和指纹图谱数据库,以达到对痕量爆炸物快速检测的目的。首先,设计合成高选择性和高灵敏度的检测芳香类爆炸物的荧光染料,通过对侧链进行不同基团修饰调控其导带和价带位置、电子结构、HOMO和LUMO能级等,获得与芳香类爆炸物特异性响应的染料分子,实现对芳香类爆炸物的快速和准确识别;其次,利用非芳香类爆炸物或次级衍生物引起原有共轭体系或发光模式的变化,建立一系列增强电荷转移相互作用的可视化染料分子;最后,基于染料分子与爆炸物分子的特异性识别体系,从中筛选出高响应性的3×3 阵列,通过合理地利用爆炸物分子的特性(不同的电子结构和尺寸),结合聚类分析(HCA)和主成分分析(PCA)实现对爆炸物种类准确无误的高效区分。
在科技兴警战略,推动新时代公安工作高质量发展的背景下,开发操作简便可进行现场快速可视化检测爆炸物种类的方法对打击爆恐势力、保障国家和公共安全有着重要意义。本项目针对涉爆案件的快速检测困难而提出的关键科学问题,建立了三种以分子识别为基础的可视化化学传感阵列,采用主成分分析(PCA)、聚类分析(HCA)和线性判别分析(LDA)实现了对爆炸物种类(TNT、Tetryl、PA、RDX、PETN、NC和HMX)准确无误的高效区分,开发出了现场痕量爆炸物快速识别的全新方法,为涉爆案件中爆炸物的快速识别与准确提取提供理论依据和技术方法;构建了快速可视化识别常见有机炸药的图像分析系统,搭建了交叉响应识别爆炸物的指纹图谱数据库,实现了爆炸案件现场快速可视化识别爆炸物的目的。本项目的相关研究成果均未见报道,具有准确度高、灵敏度高、便于携带、覆盖面广等优点,有利于提高新时代公安技术人员的实战能力,在新型警用技术与警用装备开发方面具有重要的应用前景和科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
城市轨道交通车站火灾情况下客流疏散能力评价
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
多媒体网络舆情危机监测指标体系构建研究
贵金属@MOFs拉曼微阵列芯片构建及对痕量爆炸物气氛的高通量快速检测
复合分子印迹膜识别体系的构建及在分析化学中的应用
化学分离与富集在痕量和超痕量分析中应用研究
果蝇识别爆炸物分子的嗅觉识别机制研究