With the gradual deepening of energy reforms, high proportion of renewable energy and high power electronicization have become an important feature and inevitable development trend of the new generation of power systems. How to adapt to the profound changes in power supply structure and grid characteristics is a major problem that power systems need to solve . Among them, the problem of transient voltage security after failure has become one of the core challenges faced by the dispatching of complex power system. The existing voltage control system still does not have the preventive control function for transient voltage security, which is difficult to meet the demand for voltage regulation of current power system, and many major blackouts in other countries in recent years are closely related to the transient voltage process..This project faces technical challenges such as the fault dependency of voltage distribution, the time variability of grid security boundary, and the feature diversity of reactive power source. The project will study on representative severe fault screening and dynamic voltage zoning, transient voltage safety fine rule calculation, and multi-time scale rolling prevention control, so as to realize the synergy of multiple types of reactive resources such as generators and capacitors, and improve the transient voltage support capacity of the power grid. The research of this project will promote the reactive power voltage control from steady-state optimization to dynamic prevention control, from single-time feedback control to multi-time scale rolling prevention control.
随着能源变革的逐步深入,高比例可再生能源、高度电力电子化已经成为新一代电力系统的重要特征和必然发展趋势,如何适应电源结构和电网特性的深刻变化是电力系统需要解决的重大问题。其中,故障后的暂态电压安全问题已经成为复杂电网调度运行面临的核心挑战之一,现有电压控制系统仍然不具备面向暂态电压安全的预防控制功能,难以满足高比例可再生能源、高度电力电子化电力系统的电压调控需求,近年来发生在其他国家的多起大停电均与暂态电压过程息息相关。.本课题面向电压分布故障相依性、电网安全边界时变性以及无功源特征多样性等技术挑战,将通过代表性严重故障筛选及动态电压分区、暂态电压安全精细规则计算以及多时间尺度滚动预防控制等关键技术,实现发电机、容抗器等多类型无功资源的协同配合,提升电网的暂态电压支撑能力。本课题的研究将把电网无功电压调控由稳态优化推进到动态预防控制,由单时点反馈控制推进到多时间尺度滚动优化预防控制。
随着能源变革的逐步深入,高比例可再生能源、高度电力电子化已经成为新一代电力系统的重要特征和必然发展趋势,如何适应电源结构和电网特性的深刻变化是电力系统需要解决的重大问题。其中,故障后的暂态电压安全问题已经成为复杂电网调度运行面临的核心挑战之一,现有电压控制系统仍然不具备面向暂态电压安全的预防控制功能,难以满足高比例可再生能源、高度电力电子化电力系统的电压调控需求,近年来发生在其他国家的多起大停电均与暂态电压过程息息相关。 本课题面向电压分布故障相依性、电网安全边界时变性以及无功源特征多样性等技术挑战,将通过代表性严重故障筛选及动态电压分区、暂态电压安全精细规则计算以及多时间尺度滚动预防控制等关键技术,实现发电机、容抗器等多类型无功资源的协同配合,提升电网的暂态电压支撑能力。本课题的研究将把电网无功电压调控由稳态优化推进到动态预防控制,由单时点反馈控制推进到多时间尺度滚动优化预防控制。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
多源数据驱动CNN-GRU模型的公交客流量分类预测
可动态重构的智能电网电压无功优化与协调控制研究
基于ADMM的微电网群分布式无功电压优化控制方法研究
高中压配电网电压/无功控制的模糊动态优化理论与算法
交直流系统动态无功源荷失配机理与暂态电压稳定协调控制研究