This project concentrates on link flooding attack (LFA) which recently attracts attention from the network security community, aiming at theoretical and technical methods to cope with such large-scale threat, as well as better capability to protect critical Internet infrastructure. As a new attack, LFA targets on links, which can be congested by massive pre-designed flows from botnets after routing surveillance. As a consequence, networks near the victim link would be indirectly paralyzed, without directly observing any attack traffic flows. Therefore, LFA is disruptive, indirect and stealthy. On the other hand, large-scale networks comprise complex routing and a huge number of links, and any link could be attacked, making it hard to deploy detection beforehand. Therefore, timely and accurate monitoring the link state of large-scale networks is an important first step towards the emergency response of LFA. In order to efficiently perceive the link state of large-scale networks and in turn effectively deal with LFA, this project considers new features of LFA, and proposes a new idea of randomized dynamic security patrolling, in response to practical challenges like complex networks and a huge number of links, limited monitoring resources, monitoring specific links resulting a number of invisible links. To this end, several scientific problems are addressed, including link structure and dependence evaluation, attack-defense strategy mining and game theory, optimal randomized patrolling strategies generation, etc.
本项目围绕网络安全领域最新关注的链路洪泛攻击 (Link Flooding Attack,LFA),旨在研究应对此大规模威胁的理论技术手段,以期提升互联网骨干链路设施的安全保障水平。作为一种新型攻击,LFA以链路为攻击目标,通过僵尸网络侦测路由并构造大流量经过被攻击链路,以间接瘫痪被攻击链路附近的网络,具有后果严重、间接隐蔽(被瘫痪网络无法直接感知攻击流量)等特点。同时,大规模网络路由错综复杂,链路数量庞大,任何链路都可能被攻击,防不胜防。因此,及时准确全面地监控大规模网络链路状态是应急处置LFA的关键第一步。为了高效感知大规模链路状态进而有效应对LFA,本项目结合LFA的特点,针对大规模网络链路复杂庞大、监控资源有限、静态监控特定链路存在盲区等现实挑战,提出随机式的主动安全巡逻新思路,并研究链路结构及依赖关系评估、攻守策略挖掘及博弈、最优随机巡逻策略生成等关键科学问题。
为了高效感知大规模链路状态进而有效应对链路洪泛攻击(Link Flooding Attack,LFA),本项目结合LFA的新特性,针对网络链路安全的大规模复杂性挑战,提出“大规模网络链路安全随机式主动巡逻”的研究思路,重点研究该思路所蕴含的攻守信息获取与评估、攻守策略挖掘及基于博弈论的最优随机巡逻策略生成、机会测量(Opportunistic Measurement)型攻击诊断定位等科学理论方法,并针对目标网络链路开展测试应用。本项目总计取得14项代表性成果,包括7篇代表性论文、申请4项国家发明专利、以及其他3项相关荣誉。这些成果回答了项目预设的主要研究目标和问题。本项目所得的核心成果,发表在IEEE Transactions on Information Forensics and Security、IEEE Transactions on Dependable and Secure Computing、Information Sciences、IEEE INFCOM、IEEE Intelligent Systems等高水平国际期刊和会议。..主要学术贡献包括:(1)将大规模复杂网络中的LFA检测问题形式化为Stackelberg安全博弈模型,建立防守者和攻击者的Leader-Follower模型。提出采用混合巡逻策略(Mixed-Defense Strategy),考虑攻击者掌握防守方策略的不同情况,设计具有前瞻性的巡逻策略。(2)设计最优随机巡逻策略,最大化防守方的收益。同时,基于攻击者的理性(Rationality)分析,建立攻击者对巡逻策略的响应模型,包括贪婪响应(Greedy Response)和量子响应(Quantal Response)两个模型。(3)采用混合整数线性规划、二分查找、分段线性近似等手段,解决随机巡逻策略优化问题(非线性、非凸)。通过实际实验,比较优化策略与均匀防守(Uniform-Defense Strategy)、最佳防守(Best-Defense Strategy)等巡逻策略。(4)提出了一种综合考虑技术与经济可行性的BGP路由机制,基于VCG动机设计模型,设计了一种能够兼容现有BGP路由的攻击流量重路由策略,使得攻击发生后,有效激励不同的运营商能够及时共享攻击信息,并且对攻击开展协同治理。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
中国参与全球价值链的环境效应分析
富安全模型下的时间式网络隐信道理论与方法研究
网络重要节点及链路挖掘方法研究
大规模网络化控制系统分布式随机模型预测控制方法研究
大规模自组织网络的分布式控制、服务与安全研究