As a new type of energy storage device, flexible supercapacitors have a bright application prospect in flexible electronic devices. However,how to improve electrochemical performance without affecting the mechanical stability of electrode material is a key scientific problem. Based on this question, this project proposes construction of freestanding three-dimensional heterogeneous carbon foam material. The study will focus on using various catalysts of transition metal to catalyze self-growth of carbon nanotubes on the skeleton surface of nitrogen doped carbon foam and exploring the electrochemical performance changes of nitrogen doped carbon foam after being introduce CNTs with transition metal oxides. Enhance the plasticity deformation capacity of electrode by using CNTs as the buffer layers and electrode materials with high electrochemical activity and mechanical stability is eventually worked out. Moreover, the project will study the influence rule of surface catalytic process on electrochemical properties and mechanical properties of electrode materials from the theoretical level. And developed the compressible electrode material with different electrochemical activity window as well as assemble all solid state compressible asymmetric supercapacitors from technological level. This study will provide new thought, new theoretical and experimental basis to design high quality compressible electrode materials, which will be of great significance for accelerating the commercialization process of flexible energy storage device.
可压缩超级电容器作为一种新型储能装置,在诸多领域有着广泛的应用前景。其中,可压缩电极的设计开发是影响柔性超级电容器性能的关键因素。然而,如何在不影响电极材料机械稳定性的前提下获得电化学性能的提升是目前存在的一个关键难题。针对此问题,本项目提出构筑自支撑三维异质结碳泡沫材料,拟通过采用过渡金属催化剂在氮掺杂碳泡沫骨架表面原位催化自生长碳纳米管材料,探索引入具有赝电容的过渡金属碳纳米管的电化学性能差异,并利用碳纳米管作为缓冲层来增强电极材料应力形变能力,最终获得兼具高电化学性能和高机械稳定性的可压缩电极材料。本项目将从理论层面上,研究表面催化过程对电极材料电化学性能和机械性能的影响规律;从技术层面上,研制出具有不同电化学活性区间的可压缩电极材料,并组装全固态可压缩不对称超级电容器。该研究成果将为可压缩电极的设计制备提供新思路、新理论和技术支持,对加快柔性储能装置商业化进程具有重要意义。
可压缩超级电容器在未来可穿戴电子产品中具有重要应用前景。本项目基于柔性可压缩氮掺杂碳泡沫(NCF)材料,通过水热法、自催化等方法成功制得了微观结构可控、力学性能优良的可压缩氮掺杂碳泡沫复合电极材料;如:ZnFe2O4/NCF、NiCo2O4/NCF、Ni自催化碳纳米管复合NCF、Fe自催化碳纳米管复合NCF。基于ZnFe2O4/NCF和NiCo2O4/NCF的全赝电容不对称超级电容器最大压缩程度可达60%,在功率密度为300 W kg-1 (10 mW cm-3)时,不对称可压缩器件的最大比能量密度为~11.84 Wh kg-1 (0.39 mWh cm-3),经过循环2万次后电容保持率约为74.5%。本项目的实施将为可压缩氮掺杂碳泡沫复合电极材料的可控组装、微观织构调控等提供实验和理论支持,对于开发柔性可压缩电极材料以及发展高性能柔性储能器件具有重要的科学研究意义和实际应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
高压工况对天然气滤芯性能影响的实验研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
多维过渡金属磷化物材料的设计合成及其在柔性固态超级电容器中的应用研究
柔性超级电容器电极的可控合成及电化学性能
超级电容器复合电极材料的设计合成及性能研究
海胆结构碳纳米颗粒的设计及其在超级电容器中的应用