The concurrent multiband wireless communication with co-time co-frequency full duplex (CCFD) is an in-band communication technology that transmits and receives multiband data concurrently. This project intends to introduce multiband differential antennas, multiband dual-polarized antennas, and multiband high-isolated antenna arrays to achieve the concurrent multiband antenna isolation. Subsequently, employ the algorithms and circuits for multi-tap analog cancellation to eliminate the analog self-interferences in multiple bands. Finally, implement the transceivers by utilizing the multi-port technology, which possesses the merits of high linearization and high data rates during transmitting and receiving signals. The ultimate goal of this project is to design a RF front-end with high spectrum utilization, high date rate, multiple functions, great throughput, and low end-to-end delay. Then construct a system of comprehensive theory and technology by deriving the component-analysis methodology, module-design theory, signal-processing algorithms, and the comprehensive system-architecture design. For the first time, the implementation of this project is able to merge the merits of CCFD, multiband communication, and multiport-transceiver technology at the RF front-end. This research could accelerate the development of 5G and Internet-of-Things, helping our country to win the new era of wireless communications.
同时同频全双工(CCFD)技术,是一种在同一频段上同时进行数据发送和接收的通信技术,而可以在多个频带上同时进行CCFD收发的系统,称为共时多频CCFD通信系统。本课题组拟运用多频差分天线、多频双极化天线和多频高隔离天线阵,实现共时多频天线收发隔离;运用多抽头模拟对消电路以及综合控制算法,实现多频模拟自干扰消除;运用多频多端口技术,实现线性化、高速率的信号收发,最终设计一个具有高频谱利用率、高速率、多功能、大吞吐量以及低延时等特性的射频前端,进而完整地形成一套包含分立器件分析方法、模块电路设计理论、信号处理控制算法和综合系统架构设计的系统化理论和技术体系。本项目的实施可以实现射频前端层面上的同时同频全双工通信、共时多频通信技术和多端口收发技术的相互融合,填补相关研究的空白,为我国5G和物联网的建设添砖加瓦,助力我国抢占无线通信新时代的先机。
本项目“基于多端口技术的共时多频全双工射频前端”针对无线通信系统频率多频分布特点、全双工射频前端中信号链路复杂化趋势,在器件设计理论、电路模型构建、信号处理算法以及射频前端系统架构等方面取得创新成果。通过在传统器件中融合滤波匹配结构实现基础理论创新,基于新型微带线电路结构实现射频前端系统中核心传输/分配器件(功分器、耦合器、巴伦器、移相器)功能增强;发掘改进型耦合线模块的零极点控制效应,创新具有高选择的核心选频器件(滤波器);利用滤波匹配网络,获得核心功率放大器件高精度阻抗匹配,有效提高功率放大器效率;通过谐振器与变容二极管电路灵活组合,创新出全新可调压控振荡器电路模型,为射频前端系统提供可靠振荡信号;基于超表面共面波导以及多型辐射单元实现宽带化天线;通过去耦结构创新,增强大规模天线阵列隔离效果,在射频前端系统中实现大量天线辐射单元集成;进一步创新基于改进记忆多项式的多端口接收机校准算法,形成多端口收发系统设计方法;最终形成单体共时多频雷达前端、共时多频全双工射频前端,完成数字信号与射频模拟信号的精确转换。本项目创新成果为实现无线通信系统全双工信号收发提供了较好的理论设计方法与关键技术体系,解决了5G及下一代通信系统对全双工技术的部分需求,助力我国通信行业进一步发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
计及焊层疲劳影响的风电变流器IGBT 模块热分析及改进热网络模型
Deterministic Entanglement Swapping in a Superconducting Circuit
Ordinal space projection learning via neighbor classes representation
基于双谐波线性化的级联H桥静止无功发生装置序阻抗建模与分析
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
基于数字预处理的同时同频全双工射频自干扰抑制关键技术
硅基MEMS射频前端模块技术研究
光子雷达射频前端关键技术研究
可配置多模个人无线通信射频接收前端关键技术的研究