量子计算机的核心部分就是量子网络,其中的量子逻辑门操作是通过态之间的幺正变换实现的。根据量子变换理论易于操作和具有普遍性之特点,结合量子门的幺正性,本项目利用该理论进行对线性光学量子网络的理论研究,构造量子网络中幺正算符的一般表示,以对量子网络的合成、分解、等效转换及稳定性分析等进行深入研究。我们还将重点研究量子网络的线性光学实现。同时,在我们原有工作的基础上,继续研究开放系统主方程的求解。这些问题是量子信息论中亟待解决的重要课题,这一问题的深入研究,不仅对量子计算、量子编码、量子通讯等提供重要的理论工具,还将进一步深化对量子理论中如量子纠缠、Bell非定域性及非定域性动力学等基本理论的认识。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
粗颗粒土的静止土压力系数非线性分析与计算方法
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
线性光学量子计算的理论研究
量子相干调控下量子限制结构的非线性光学现象的理论研究
极性超薄半导体量子阱非线性光学性质理论研究
量子非线性光学的研究