大规模稀疏线性规划投影主元算法的研究

基本信息
批准号:19971014
项目类别:面上项目
资助金额:8.00
负责人:潘平奇
学科分类:
依托单位:东南大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:顾国华,尹家洪,林文松,吴建专,费红英,王涌,曹军,钱飞
关键词:
主元投影线性规划
结项摘要

Linear programming is broadly applied in national economy, science, technology, management, military affairs, and so on. Nowadays the globalization has been quickening its advance, as is resulting in a vast amount of large and sparse linear programming models. Aiming at solving such kind of models efficiently, this project is of great importance both.theoretically and practically. This project introduced a deficient basis, generalized the basis concept from the square m m× matrix to a rectangular s m× matrix, and thereby generalized the simplex algorithm to a eficient-basis-allowing simplex algorithm and a dual deficient-basis-allowing simplex algorithm. Theoretical analysis revealed that the new algorithms have the.convergence property similar to that of the simplex algorithm, but an exceptional characteristic of anti-degeneracy. The more degenerate a model is, the fewer columns the basis has (relative to the number of rows) and the smaller the linear s s× system solved in each iteration is (relative to the conventional m m× system); this reduces not only the negative effects of degeneracy but also the computational complexity per iteration. Moreover, this project developed a method for computing the orthogonal projection of the negative gradient of the objective function onto the null space of any matrix, which is not only a good search direction.but also good at keeping sparcity of the vectors and matrices involved. Using the LU decomposition and appropriate data structure, this project resolved in details the implementation problems of the dual deficient-basis-allowing simplex algorithm. Taking as a plactform MINOS.5.3, developed by Stanford Univesity , one of the best optimization software packages in the world a new package named DPSLP 1.0 was developed. DPSLP 1.0 was tested, and compared against MINOS 5.3 with 49 standard NETLIB test problems. It required 2511 iterations and 53.99 seconds to solve MAROS-R7, the largest of the test problems, while MINOS 5.3 required as high as 481.70 seconds, and still failed to solve the problem as no.further progress was possible for 1000 iterations on end. The new package.outperformed MINOS 5.3 unambiguously, with total CPU time ratio 2.14 for.solving all of the rest 48 test problems. Therefore, our results attainthe advanced world levels.

人类经济活动全球化趋势的加剧导致大规模稀疏线性规划的大量生产。单纯形算法和內点算法在求解此类模型上取得巨大成功,但它们仍有各自不足之处。本项目将研究新型高效算法,通过对基概念的修改和投影技术的恰当应用,在很大程度上吸收单纯型算法的和內点算法的优点而排除它们的缺点,具有重大的理论和实际意义。.

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
2

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
3

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
4

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
5

基于混合优化方法的大口径主镜设计

基于混合优化方法的大口径主镜设计

DOI:10.3788/AOS202040.2212001
发表时间:2020

潘平奇的其他基金

批准号:10871043
批准年份:2008
资助金额:24.00
项目类别:面上项目
批准号:10371017
批准年份:2003
资助金额:17.00
项目类别:面上项目

相似国自然基金

1

大规模稀疏线性规划主元内点算法的研究

批准号:10371017
批准年份:2003
负责人:潘平奇
学科分类:A0405
资助金额:17.00
项目类别:面上项目
2

线性规划对偶投影最钝角松弛算法的研究

批准号:10871043
批准年份:2008
负责人:潘平奇
学科分类:A0405
资助金额:24.00
项目类别:面上项目
3

线性与非线性规划中的投影收缩算法及其应用

批准号:19341002
批准年份:1993
负责人:何炳生
学科分类:A0405
资助金额:1.50
项目类别:专项基金项目
4

大规模整数线性规划直接搜索算法

批准号:70971136
批准年份:2009
负责人:倪明放
学科分类:G0102
资助金额:25.00
项目类别:面上项目