Imaging is an important approach and method for information recording and transmission. It plays an increasingly important role in fundamental sciences and advanced technologies such as aircraft and space industry, national defense, and anti-terrorisms. In recent years, coincident imaging provides a novel and non-local imaging mechanism. Coincident imaging with photons has been demonstrated and its related technologies have been transferred to applications. In the proposed project, we intend to investigate the mechanisms of neutron coincident imaging. Neutrons are fermions which are completely different from photons which are bosons. Neutrons and photons have different characteristics. Thus, neutron coincident imaging will not only promote the coincident imaging techniques to new areas, it will also deepen our understanding on quantum properties of matters. In this project, we will first calculated correlation functions for fermions in general, and analyze the characteristic properties of neutron coincident imaging, and then estimate the interference length and other parameters using the wave function of neutrons under various conditions. In order to demonstrate the neutron coincidence imaging in laboratory, we will use a specially designed and fabricated neutron scattering material which can be rotated to create controllable neutron speckle patterns, and then employ two different approaches to obtain neutron coincident imaging. These two approaches are to correlate neutron detection, under a stable illumination of the speckle field of neutron, of the neutron detection with and without the neutron beam passing through the imaging object, the other approach being correlate two interference neutron beams with one pass through the imaging object. The proposed project will open up a new area for coincident imaging, and will lead to further development of neutron imaging and quantum information.
成像是记录和传递信息的重要形式和方法,在基础科学和前沿高科技领域(如航空航天,国防,反恐)的作用越来越重要。近年来关联成像技术提供了一种全新的非局域性成像机制。光子关联成像已经被实现并推广至应用。本项目拟探索中子关联成像的机制。中子为费米子,与光子(玻色子)具有不同的基本特性,因此中子的关联成像不仅可以将关联成像技术推广到新的领域,还可以加深我们对物质的量子行为的理解。本项目中首先从理论上推导费米子的二阶相干函数,分析中子关联成像的各种特性,并计算出中子波函数在各种条件下的相干性以及有关参数。为了在实验室演示中子的关联成像,我们将利用特制的旋转中子散射体产生并控制中子波函数空间涨落,然后通过二种独特的方法进行关联成像。这两种方法是在稳定的中子散斑场中移动成像物来关联成像,和二束相干中子束的一束通过成像物后关联成像。本项目将关联成像开拓至一个全新的领域,将推动中子成像和量子信息的发展。
成像是记录和传递信息的重要形式和方法,在基础科学和前沿高科技领域(如航空航天,国防,反恐)的作用越来越重要。近年来关联成像技术提供了一种全新的非局域性成像机制。光子关联成像已经被实现并推广至应用。本项目探索了中子关联成像的机制。中子为费米子,与光子(玻色子)具有不同的基本特性,因此中子的关联成像不仅可以将关联成像技术推广到新的领域,还可以加深我们对物质的量子行为的理解。本项目中首先从理论上推导了费米子的二阶相干函数,分析了中子关联成像的各种特性,并计算出中子波函数在各种条件下的相干性以及有关参数。为了在实验室演示中子的关联成像,我们利用特制的旋转中子散射体产生并控制中子波函数空间涨落,然后通过二种独特的方法进行关联成像。这两种方法是在稳定的中子散斑场中移动成像物来关联成像,和二束相干中子束的一束通过成像物后关联成像。本项目将关联成像开拓至一个全新的领域,将推动中子成像和量子信息的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于分形维数和支持向量机的串联电弧故障诊断方法
混采地震数据高效高精度分离处理方法研究进展
煤/生物质流态化富氧燃烧的CO_2富集特性
极化中子成像技术研究
中子鬼成像技术的实验研究
中子全息成像技术初步研究
高性能中子瞬态成像技术的研究