(限3000 Characters):.Inhibitory effect induced by the accumulation of metabolites during anaerobic digestion is a common problem which heavily restricting the process efficiency . Biochar with features of porous and huge specific surface area has proved to be effective on ammonia adsorption and microbial selective colonization. The previous research of our team on biochar’s potential function as a supprot material for microbial growing, breeding and metabolite, has indicated that biochar could significantly relieve the ammonia inhibition and promote the biogas production. More indepth research is necessary to be executed on the underlying mechanism. The potential of biochar function on the relieve of the acid accumulation is very interesting to be verified and the conresponding theory constructure would be of great significance on microbial interactions and their metabolic potential, which is very crucial to enhance the efficiency of anaerobic digestion process..This project is aimed to explore the biochar function on the inhibition alleviation and efficiency enhancement and the mechanism.Firstly biochars prepared from virous waste biomass will be screened using batch anaerobic digeston tests with tyical nitrogen-rich and easily-acidfied substrates, respectively. Secondly the charecteristics of the mixed slurry during anaerobic digestion will be stuied in detial to explore the substrate transformation patterns and explicit the key factors correlated to the performancce enhancement. Thirdly, apparent morphology and internal chemical structure of biochar will be monitored continously during long term anaerobic digestion process.With high-throughput sequencing and other moleculer microbial technologies, development and selective colonization of microbial community structure will be carried out to clarify how the microbial community is selectively colonized mediated by biochar. Finally, the mechanisms of the biochar regulations on anerobic digesiton will be reavealed.
代谢产物积累产生的抑制效应是制约厌氧消化系统高效运行的普遍难题。生物炭疏松多孔具有良好的吸附氨氮和微生物选择性定植能力,本团队将其作为微生物生长、繁育和作业载体,已表现出对氨抑制的显著缓解作用。深入研究生物炭对氨抑制解除机理,并拓展到酸积累调解的理论研究,对厌氧消化过程菌群协作调控和代谢潜能挖掘具有关键的理论意义,对沼气发酵工程的效能提升具有重要应用价值。.本项目通过生物炭结构和成分优选, 进行高氮和易酸有机物厌氧消化批式实验,根据产气潜能提升确定生物炭添加的优化方案;研究发酵料液中有机质组分和形态转化规律,分析碳、氮和磷等主要元素的过程形态转化特征及生物炭自身性态特征变化,全面揭示生物炭对厌氧消化过程的促进规律和效能;借助高通量测序等分子生物学技术,分析体系中微生物种群结构变化特征、微生物选择性富集和种间互营机制,以及生物炭自身形态演化,阐明生物炭介导对厌氧消化微生物代谢转化的强化机理。
代谢产物积累产生的抑制效应是制约厌氧消化系统高效运行的普遍难题。本项目将生物炭作为微生物附着、生长、繁育和作业载体,深入研究生物炭对氨酸抑制解除、微生物群落优化、种间互营、代谢强化、提质增效的特性与机理,在以下方面取得了理论和方法上的突破:(1)提出了生物炭介导的高氮原料厌氧消化提质增效的工艺方法,实现了提高甲烷含量和降低二氧化碳及硫化氢含量的技术途径,得到了实现生物炭添加量的有效目标区域。(2)提出了改性生物炭介导的高碳原料厌氧消化提质增效的工艺方法,探索出总产甲烷量随厌氧消化主要因素变化的数学模型,得到主要因素对总产甲烷量重要性排序和最优工艺参数。(3)提出了生物炭介导的混合厌氧消化厌氧消化提质增效的工艺方法,探索出甲烷产量随总固体含量、热解炭添加量和碳氮比变化的数学模型,得到三因素对甲烷产量重要性排序和最优工艺参数。(4)提出了生物炭介导的微生物燃料电池反应器同步产电和产甲烷的工艺方法,探索出使微生物燃料电池反应器日产甲烷量与甲烷含量显著提升的技术途径,为生物质厌氧消化转型升级和提质增效拓宽了技术思路。(5)探明了生物炭介导厌氧消化过程中减少微生物冗余、降低二氧化碳和硫化氢含量、提高甲烷含量的机理,确定了生物炭介导厌氧消化解抑复稳的最适条件,为原位提高沼气品质提供了新的途径。(6)初步探明了生物炭介导的微生物代谢及种间电子传导机制,明确了炭载体支持细胞固定和微生物膜增殖,促进产氢产乙酸菌与产甲烷菌群之间的直接种间电子传递的机理。项目研究成果为厌氧消化提质增效工艺技术的研发奠定了理论基础,对大力发展有机废弃物无害化处理和资源化利用工程,使其在清洁能源供给、环境污染治理、CO2减排和生态循环农业等方面发挥不可或缺的重要作用具有非常重要的现实意义。项目超额完成了预期成果指标,发表论文29篇:其中,SCI论文13篇,EI论文12篇,中文核心论文4篇;获批授权专利7项:其中,发明专利3项,实用新型4项;出版专著2本;4篇学术论文被评为中国沼气学会优秀论文一、二、三等奖;3个项目分别获得全国沼气+创新创业挑战赛和农建环保能源创新竞赛特等、一等、三等。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物反应器填埋场厌氧氨氧化协同增效反硝化的微生物机理和优化策略
厌氧生物除磷过程及机理研究
改性活性炭催化强化厌氧BAC-FBR处理难降解有机废水及其机理研究
高效氮肥和生物炭施用对稻田反硝化与厌氧氨氧化脱氮速率的影响及其机制