Fast and accurate detection of blood glucose plays a significant role in guiding the timely prevention and effective treatment of diabetes. Non-enzymatic electrochemical glucose sensors have been the current research hotspot due to their excellent stability and accuracy, yet the low sensitivity and poor selectivity restrict their commercial development and application seriously. Constructing an efficient electrochemical sensing interface turns to be the key step to solve the above bottlenecks. In this project, a new combination of the bimetallic synergistic effect and the function-oriented design of micro-/nano-sized sensing interfaces is proposed, and the composition and structure of enzyme-free porous M@Pt-based electrochemical interfaces are subtly manipulated, in order to achieve the in situ continuous monitoring of dynamic blood glucose. Firstly, an integrated system of theoretical calculation and experimental measurement will be established for component screening, and the correlation of the Pt-based core-shell bimetallic activity toward glucose electrocatalytic analysis and its chemical composition will be clarified; afterwards, a rational model for designing and regulating the Pt-based bimetallic electrode structure will be formed, and the relationship between the electrochemical micro-/nano-sized interface structure and its analytical property will be uncovered; finally, an in situ detection platform based on optimal porous M@Pt-based micro-/nano-sized sensing interfaces with high sensitivity and selectivity will be constructed, and its analytical behavior for the continuous monitoring of dynamic blood glucose will be systematically studied. This project creatively expands and deepens the enzymeless electrochemical detection of blood glucose from the conventionally frequent sampling analysis to the in situ continuous dynamic monitoring, and also provides new insights for the rational fabrication of high-performance non-enzymatic electrochemical sensing interfaces for other targets.
血糖的快速准确检测对糖尿病的及时预防和有效治疗至关重要,无酶血糖电化学传感器因其杰出的分析稳定性和准确度成为当前的研究热点,但较低的灵敏度和欠佳的选择性严重制约了它的商业开发与应用,构筑高性能的电化学传感界面成为解决此瓶颈问题的关键。本项目拟联合双金属的协同作用与微纳传感界面的理性设计,通过对无酶型多孔M@Pt基电化学微纳界面进行组分筛选和结构调控,实现对动态血糖的原位连续测定。建立理论计算与实验测试相结合的组分筛选体系,揭示核壳型铂基双金属对葡萄糖的电催化分析性能与其化学组分之间的变化规律;形成传感界面结构的导向性设计与调控机制,阐明电化学界面的微纳结构与其检测性能之间的构效关系;构筑高灵敏度和高选择性的无酶电化学原位分析平台,探究其对动态血糖的连续监测行为。本项目创造性地将血糖的无酶电分析从常规的频繁取样检测拓展至原位连续动态监测,并为高性能无酶电化学传感界面的合理构建提供新思路。
建立可靠的血糖分析新方法,开发高效的血糖监测新设备,具有重大的科学、经济和社会价值。与酶电极相比,无酶的葡萄糖电化学传感器具有优良的性能稳定性和分析准确度,制备和保存方式简便,成本较低,干扰因素少。更重要的是,后者在满足动态血糖的长期连续监测方面具有良好的开发前景。为获得高性能的无酶电化学传感器,构筑高效的传感界面是关键。本研究针对当前的铂材料在葡萄糖无酶电分析中存在灵敏度低、选择性差的问题,联合双金属的协同作用与微纳传感界面的理性设计,通过对Pt基无酶电化学微纳传感界面进行组分筛选和结构调控,实现了对血糖的电化学监测。本课题:(1)建立了理论计算与实验测试相结合的组分筛选体系,通过揭示铂基双金属对葡萄糖的电催化分析性能与其化学组分之间的变化规律,筛选出了最佳的Pt-Pd二元组分;(2)在组分筛选的基础上,形成了Pt-Pd电极结构的导向性设计与调控机制,通过阐明电化学传感界面的微纳结构与其检测性能之间的构效关系,设计和构筑了最优的多孔Pt-Pd基无酶电化学微纳界面结构;(3)利用优化的传感界面构建了高灵敏度和高选择性的无酶电化学分析平台,探究了其对血糖的监测行为。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
连续血糖监测用微纳传感器的构建及其失效机理研究
面向微流控光学传感的管状微腔内通道微纳构筑
连续血糖监测中非均匀介质人体组织的射频动态响应机制研究
氮掺杂多孔碳纳米纤维支撑过渡金属氧化物/导电聚合物传感界面的构筑及其无酶电化学传感研究