Bacterial infection is a big challenge to Ti-based metallic implants. When there is an internal implant, the number of bacteria needed to infect the implant will be greatly reduced. Once the pathogen forms a biofilm on the implant surface, it is impossible to be removed by the immune system and general antibiotic treatment. The abscess of the biofilm causes the patient to undergo a secondary operation to remove the implant. Therefore,safe, efficient and rapid elimination of bacterial infection and long-term prevention are important for the wide clinical application of titanium alloy and other metallic implants. Ag3PO4 has excellent photocatalytic ability, which can produce a large amount of ROS under the light irradiation. Besides antibacterial activity of Ag+ , Ag3PO4 and its composite materials can be used as photodynamic antibacterial materials. Hence, it can kill bacteria through the production of ROS and silver ions, and the release concentration of silver ions can be controlled by oxidized graphene and polydopamine. It has been reported that MoS2 nanoparticles also have good biocompatibility and high photothermal conversion efficiency. Therefore, the project aims to eliminate the bacteria rapidly, in real time and in situ by the photothermal and photodynamic characteristics of Ag3PO4 nano-hybrid coating. in addition, the long-term bacterial infection prevention can be achieved through the long-lasting release of silver ions.
细菌感染是以钛合金为代表的金属植入体植入体内后面临的巨大安全挑战。因为当有内植入存在时,导致该植入部位感染所需要的细菌数量将大大减少。一旦致病菌在植入体表面形成生物膜之后,机体免疫系统和一般的抗生素治疗都很难消除生物膜。生物膜形成的脓肿使得病患不得不进行二次手术摘除植入体。因此,安全、高效、快速地消除细菌感染以及长期的预防是钛合金等金属植入体大规模临床使用的重要环节。Ag3PO4有着优异的光催化能力,在光激发过程中能产生大量的ROS,除了Ag+抗菌外,Ag3PO4及其复合材料可用作光动力抗菌材料。因此它可通过产生的ROS和银离子协同杀灭细菌,银离子的释放浓度可通过氧化石墨烯以及聚多巴胺等来控制;MoS2纳米片还具有很好的生物相容性和较高的光热转换效率。因此本项目拟通过Ag3PO4基纳米杂化涂层的光热及光动力特征协同快速、实时、原位消除细菌。并通过银离子的缓释来实现长期的预防。
细菌感染是以钛合金为代表的金属植入体植入体内后面临的巨大安全挑战。因为当有内植入存在时,导致该植入部位感染所需要的细菌数量将大大减少。一旦致病菌在植入体表面形成生物膜之后,机体免疫系统和一般的抗生素治疗都很难消除生物膜。生物膜形成的脓肿使得病患不得不进行二次手术摘除植入体。Ag3PO4有着优异的光催化能力,在光激发过程中能产生大量的ROS,除了Ag+抗菌外,Ag3PO4及其复合材料可用作光动力抗菌材料。因此本项目拟通过Ag3PO4基纳米杂化涂层的光热及光动力特征协同快速、实时、原位消除细菌,并且可以通过银离子的缓释来实现长期的预防。本项目在研究过程中获得了一些原始创新的研究成果,利用不同的磷酸银复合体系多次验证了磷酸银基复合涂层的抗菌性能以及生物相容性。已发表SCI论文66篇,申请专利6项,引用次数达3056次。在Nature communication、Science Advance、Advanced Material、Advanced Functional Material、ACS Nano等均发表过成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
钛基植入体自组装纳米胶束抗菌表面的构建及其应答式骨修复作用的研究
多孔钛孔壁铜-银双因子生物活性涂层构筑及其光热响应协同抗菌机制
兼具促成骨及抗菌性能钛基植入体生物功能性界面研究
钛种植体材料表面静电自组装抗菌生物涂层的研究