Flexible electronics has advanced at a rapid pace in the past dozen years, driving a fascinating transformation of the consumer electronics pattern. The self-powered wearable electronics which possesses good coordination among energy harvesting, management, and storage is highly desired because it is light weighted, highly integrated, and free of external electrical connections. Therefore, it is really urgent to exploit a new micro-nano power energy system from the view of both scientific research and industrial production. .Here we will apply copper flexible substrate and triboelectric nanogenerator (TENG) to fabricate the novel micro-nano power energy system based on oxide flexible electronic circuits and energy harvest from ambient motions. ZnO-based high-voltage thin film transistors (HV-TFTs) and high-voltage thin film diodes (HV-TFDs) will be fabricated on the thin Cu substrate which is obtained by electroplating technique. We will focus on the major issues of diffusion between the interfaces, carriers induced by Joule heat, and surface absorption. Secondary ion mass spectroscopy (SIMS), atomic layer deposition (ALD), magnetron sputtering, and other powerful instruments will be adopted to reveal their influence on the performance of our oxide flexible electronic devices and provide a guidance to the promotion of the HV full-wave rectifier circuits' efficiency. On the other hand, wrinkle structures with different shape and size will be prepared via our unique invention. Their effect on the output performance of TENGs will be explored in different working modes, respectively. The fabrication methods and process parameters will be optimized to improve TENG’s output efficiency. Lastly, the ZnO-based flexible full-wave rectifier circuits on copper, the TENG with wrinkled structures, and the supercapacitors will be connected together to develop an unprecedented micro-nano power energy source. To achieve this target, the integration and compatibility between oxide flexible HV rectifier circuits and TENGs will be systematically studied, thus promising the applications of this new micro-nano energy source in various wearable electronic systems. This project is technologically important and hopefully boosting the momentum of related research.
随着科技的进步和人们对生活品质要求的不断提高,柔性技术正在经历着前所未有的快速发展,而配套的相关研究仍然缺乏;以可穿戴设备为例,其中一个关键的环节就是微纳电源系统,实验方面尚未发现有重要进展。本项目拟采用金属铜柔性衬底研制氧化锌基高压整流电路和开发新型低成本、高转换效率的摩擦纳米发电机(TENG)结构两种技术路线,通过揭示界面互扩散、焦耳热及热载流子效应、表面吸附等因素对器件中电子输运及器件性能的影响规律,提高柔性高压全波整流电路的转换效率和稳定性;研究摩擦层表面具有不同形状和尺寸的微纳结构的形成方式,及其对位移电流的大小与输运特性的重要影响,优化微纳结构的制备方法和工艺参数,改善TENG的输出性能;发展转换效率高的新型微纳能量获取结构,设计不同器件之间的结合方式和工艺,构建系统结构,开发出包含TENG、柔性氧化物电子电路及超级电容器在内的微纳电源系统,获得该研究领域的重大突破。
由于物联网尤其是5G技术的不断发展,我们生活环境中的无线射频源及电磁场强度在不断增加。这部分电磁场包含大量没有被收集和利用的能量,对于便携式可穿戴电子设备及微弱信号探测等低功率电子设备来说,是非常有希望用于驱动的有效能源。因此如何有效收集并利用环境中电磁场的能量愈发重要。.宽禁带氧化物半导体材料具有可低温生长、大面积柔性制备的优势,同时还具有非常优异的光电性能。因此项目组针对上述现状,利用铟镓锌氧(IGZO)、氧化镓等材料开展了一系列原创性研究工作,在新型柔性微纳能源的采集、管理与验证等领域获得了重要突破和进展:(1)率先开发了一种新型静态模式下的环境电磁辐射能量采集方案,并对其工作原理与器件结构开展了系统研究;(2)利用双沟道层器件结构,结合缺陷及界面调控,开展了IGZO薄膜晶体管与场效应二极管性能的性能优化研究,分别获得了具有良好耐压特性(击穿电压由~150V提高到>400V)和频率响应特性(由~1kHz提高到~10MHz)的能量管理电路元器件;(3)开展了氧化物半导体柔性光电子元器件的结构设计与制备研究,获得了低功耗、高性能的日盲紫外与X射线探测器件;(4)构建了集氧化物场效应二极管整流电桥、氧化镓基深紫外探测器及能量收集装置为一体的柔性自供电深紫外探测系统,充分展示了上述技术在柔性低功耗探测器/传感器领域的巨大应用潜力;(5)利用离子液体等效电容,试研制了整流滤波一体化能量管理电路,成功地将环境辐射能量收集存储到电容之中,并点亮了商用红色LED灯珠。.项目执行期间,取得了多项原创性的重要研究成果,共发表20篇SCI文章,申请国家发明专利15项、实用新型2项,获授权发明专利9项、PCT国际专利1项、实用新型2项,为推动氧化物半导体材料在柔性电子学器件领域的应用研究奠定了扎实的物理和技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
柔性可调谐微纳结构光学元件的研制与性能表征
柔性摩擦光电子学器件研究
混沌、噪声与电子学系统
微纳尺度柔性结构的非线性振动特性研究