It is a great challenge to realize fast and accurate fault location in coal mine power grid. While in normal power grid, the travelling wave method based on Wide Area Measurement System(WAMS) is reasonable effective to solve fault location. However, this method needs a great number of strictly synchronous measure points and real-time communication system to support it, so it is hardly to adopt in coal mine power grid directly because in coal mine the massive traveling wave measure points cannot easily deployed and it is impossible to ensure that every traveling wave measure point could obtain the GPS synchronous timing signals. .With the traveling wave are achieved by asynchronous measure points in different place in the power grid, this project aims at the attenuation of fault-generated transient traveling wave and can realize the fault location in coal mine power grid..First the energy attenuating rules of traveling waves in the coal mine power grid are studied systemically, and with building the emulation platform of transmission line, the travelling wave attenuation degree relationships of every measuring points are discovered while the fault is occur in different place of the power grid. Based on it, the fundamental fault location model is built. .Secondly, how to achieve optimal deployment of the measuring points is studied. With the constraints of deploy measuring points is thoroughly explored, the optimal deployment is realized based on the maximal observability of fault location. .In the end, based on the study of relationship between wave fronts and topology at each measuring point, the filters are determined to eliminate invalid information of wave fronts, thus the accurate fault location is completed via multi-source information fusion of several single-end-based results. The project will provide theoretical basis and technical support for the application of traveling wave method based on attenuation of multi-source information. It also has important theoretical and practical significance to improve the power supply reliability and safety in the coal mine power grid.
故障的快速准确定位是煤矿电网面临的重大难题,广域同步行波测距是电网故障定位的有效手段。然而,煤矿井下无法布置时间同步的行波测量点,严重制约了行波测距在煤矿电网的推广应用。本项目从故障后暂态行波传递衰减的角度出发,通过异步测量获取电网不同位置的暂态行波,完成多源衰减行波在煤矿电网故障定位研究。基于行波衰减理论研究煤矿电网故障衰减规律,搭建线路仿真实验平台找出各测量点行波衰减的准确关系,建立行波衰减的故障定位模型;进而提炼测量点优化配置的约束条件,立足故障定位最大可观性,给出多测量点的优化部署方案;根据测量点间暂态行波各波头时刻与网络拓扑的关系,研究配置滤波器滤除与故障位置无关的波头信息,利用多源信息对多组单端测距的结果进行融合判定,实现精确故障定位。项目的研究将为多源衰减行波法在我国煤矿电网故障定位的应用提供理论基础和技术保障,对提高我国煤矿供电可靠性与安全性具有重要的理论意义和现实价值。
我国大部分煤矿为井工开采,井下高温高湿的环境加快了高压设备绝缘水平的下降。并且,井下经常搬迁作业使电缆受到外力机械损伤,大大降低其绝缘水平,由此引发的单相接地故障屡见不鲜。单相接地故障引起的接地电弧及短路电流易引发煤尘及瓦斯爆炸,严重威胁煤矿安全生产。本项目针对煤矿高压电网井下供电的特殊性,提出了基于多源衰减行波的煤矿电网故障定位方法研究。主要研究了暂态行波在煤矿高压馈线中的衰减规律、故障位置变化与测量点间行波衰减程度的关系、煤矿电网行波测量点的选择、多源信息的煤矿电网故障定位方法。项目期间共发表了12篇论文并申请了8项专利,转化了4项专利。项目的成果为暂态行波法在我国煤矿电网故障定位的应用提供理论基础和技术保障,对提高我国煤矿供电可靠性与安全性具有重要的理论意义和现实价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
面向云工作流安全的任务调度方法
基于分形维数和支持向量机的串联电弧故障诊断方法
基于FTA-BN模型的页岩气井口装置失效概率分析
基于参数化时频分析的电网故障行波信号精确识别方法研究
电网故障行波精确检测与行波保护应用基础研究
基于预测校正技术的配电网故障定位方法研究
复杂电网故障高精度行波定位的基础理论和关键技术研究