Whispering-gallery-mode optical microcavity is a kind of dielectric microcavity that confines light based on the principle of total reflection. Its quality factor can be larger than 10^8 and has an important application in sensing. The traditional sensing mechanisms of whispering-gallery-mode optical microcavity depend on measuring the shift, splitting or broadening of the optical transmission dips, but the noise like the drift of the laser wavelength and the vibration of the optical fiber taper can affect the accuracy of these sensing mechanisms, which especially leads to a severe challenge in sensing small nanoparticles. Ringing phenomenon is a kind of interference phenomenon, and the project will investigate ringing phenomenon based whispering-gallery-mode optical microcavity sensing. It is a new kind of sensing mechanism, and compared to the traditional mechanisms it has a strong anti-interference ability and is insensitive to the noise like the drift of the laser wavelength and the vibration of the optical fiber taper. The ringing phenomenon based whispering-gallery-mode optical microcavity sensing has higher sensibility and can sense fast process. We will experimentally investigate the ringing phenomenon in erbium-doped and non-erbium-doped whispering-gallery-mode optical microcavity and use it to sense small nanoparticles. In order to further reduce the system complexity and reduce the vibration of the optical fiber taper, we will also investigate the fabrication of a new kind of whispering-gallery-mode optical microcavity with coupled optical fiber taper, the ringing phenomenon in this microcavity and its application in sensing nanoparticles. The results of the project will promote the development of highly sensitive detection technology.
回音壁光学微腔是基于全反射原理束缚光的介质微腔,它的品质因子能达到10^8以上,在传感技术中有重要的应用。传统的回音壁微腔传感原理依赖于测量光传输谱线的移动量、劈裂量或者展宽量,但激光波长的漂移、光纤锥的振动等会影响这些传统方法的传感精度,尤其是小尺寸纳米颗粒的传感面临严峻的挑战。振铃现象是一种光学干涉现象,本项目将研究基于振铃现象的回音壁微腔传感。这是一种新型的传感原理,与传统方法相比其抗干扰能力强,对激光波长的漂移、光纤锥的振动等噪声因素不敏感,具有更高灵敏度的检测能力,并且能用于快速变化过程的传感。本项目将分别实验研究掺铒和不掺铒的回音壁微腔振铃现象,并实现小尺寸纳米颗粒的传感;同时,为进一步降低系统复杂度和减少光纤锥的振动噪声,我们还将烧制带耦合光纤锥的新型回音壁光学微腔,并利用它研究振铃现象及其在纳米颗粒传感中的应用。所获研究成果将促进高灵敏检测技术的发展。
回音壁光学微腔利用全反射原理将光束缚在腔内,其光学模式具有高的品质因子和小的模式体积,是研究光与物质相互作用的重要平台。传感是回音壁光学微腔的重要应用之一。本项目探索回音壁光学微腔中的振铃现象,并应用于传感。微腔振铃现象的一个新进展是ring up(上振铃)谱方法的提出,该方法能够实现超快传感,而且有望应用于腔量子电动力学、蛋白质折叠等方面,项目组成员对Ring up谱方法进行了详细的研究,得到了对实验现象的清晰解释。项目组成员还利用振铃现象测量了通常的模式劈裂方法无法测量的弱模式耦合强度。项目组成员还研究了回音壁光学微腔中的法诺现象、类电磁感应透明现象、光机械振动现象等。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于全模式全聚焦方法的裂纹超声成像定量检测
极区电离层对流速度的浅层神经网络建模与分析
基于光纤液体微腔的回音壁模式及微流传感研究
回音壁光学微腔模式特性及微腔激光器的研究
基于片上回音壁模光学微腔的光力量子基态冷却
基于回音壁模式光学微腔的可扩展量子信息处理研究