Myotonic dystrophy type 1 (DM1) is the most common form of adult muscular dystrophy. DM1 is caused by the progressive expansion of (CTG) triplet in the 3' untranslated region (UTR) of DMPK (dystrophia myotonica-protein kinase) gene. Although some symptoms of DM1 can be treated and alleviated, currently there is no cure for this disease. Our previous data showed the first generation of engineering site-specific RNA endonucleases (ASREs) can specifically degrade the pathogenic DMPK mRNAs, significantly decreased the number of nuclear foci and can reverse the mis-splicing of many genes affected in DM1 cells (Molecular Therapy, 2014). But how to increase the binding specificity and reduce off-target effect? Based on our preliminary results and our research background on RNA (Nat Struct Mol Biol, 2011), we will carry out experiments to optimize the first generation of ASREs to select for enzymes with optimal activities. And we will test if they can indeed cleave pathogenic DMPK mRNAs and determine the cellular consequence of different ASREs in DM1 cells; We will further systematically analyze the genomic consequence and off-target effect of ASREs treatment. This study will lay a solid foundation for the drug development of ASREs. Collectively, ASREs will open a new door that leads to the treatment of DM1 through gene therapy approach.
1型强直性肌营养不良症(DM1)是最常见的成人肌营养不良症。DM1由强直性肌营养不良蛋白激酶(DMPK)基因的(CTG)n重复序列异常扩增引起,目前尚不能治愈。我们前期研究利用人工特异性RNA内切酶(ASREs)识别并降解DM1病人细胞中致病DMPK的mRNAs,减少细胞核内RNA聚集及纠正多个基因的异常剪接(Molecular Therapy, 2014)。但如何提高ASREs的特异性,减少脱靶现象,亟待解决。在前期研究的基础上结合我们深厚的RNA研究背景(Nat Struct Mol Biol, 2011),本项目将在第一代ASREs的基础上进行优化,筛选出具有最佳活性的ASREs,探明ASREs能否降解致病基因DMPK mRNA以及对DM1细胞的影响;并系统性分析其对DM1细胞整个转录组的影响。本项目的顺利实施将为ASREs药物的研制与开发打下基础,为DM1提供一种新的治疗策略。
人工特异性RNA内切酶(ASREs)能够特异性结合并切割靶标RNA。ASRE由一个特异性的RNA识别结构域(人PUM1蛋白的PUF结构域)和一个RNA内切酶结构域(人SMG6的PIN结构域)组成。PUF结构域由8个串联重复序列组成,仅可识别8-nt RNA,限制了其应用。本研究主要是在第一代人工特异性RNA内切酶ASREs的基础上进行优化,从而提高ASREs的识别特异性,减少脱靶现象,并增强其活性。首先,构建不同重复序列长度的PUF结构域,得到了分别识别6-nt、9-nt、10-nt和12-nt RNA底物的PUF,即PUF-6R、PUF-9R、PUF-10R和PUF-12R;其次,通过酵母三杂交系统和荧光偏振实验,结果表明随着重复序列数的增加,PUF的结合力也随之增加,但当重复序列达到9和10时,PUF结合力达到峰值。再次,PUF-9R的结构分析显示PUF-9R延长了PUF的线性长度,而且增加了整体曲率,当RNA与PUF-9R结合后,PUF-9R的弯曲构象会展平,类似于天然的PUF-8R,因此具有更强的RNA结合力。此外,通过分子量较小且具有高的RNase活性的Onconase替换ASREs中发挥内切酶作用的PIN结构域,发现置换后的ASREs具有较高的切割活性。综上所述,本项目有效地优化了ASREs,提高了其结合靶标序列的特异性及催化活性。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
低轨卫星通信信道分配策略
血管生成素核酸内切酶活性在非编码RNA降解中作用及其功能机制
磁性纳米人工内切酶的研究及其应用
人工金属配合物内切酶研究
人工金属配合物内切酶的研究